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Zusammenfassung

Ultrakalte Quantengase werden in einer Vielzahl von Experimenten zur
Simulation verschiedenster Modelsysteme genutzt, da sie einen vergleichswei-
se einfachen Messzugang bieten und sich aufgrund der einfachen und präzisen
Kontrolle über die mit ihnen erstellten Systeme besonders gut dazu eignen.
Insbesondere in Bezug auf die Simulation von Festkörpern sind sie bestens
geeignet. Denn mit optischen Potentialen lassen sich für die Quantengase de-
fektfreie Gitter verschiedenster Geometrien erstellen. Sie bilden eine ideale
Basis zur Untersuchung von neuen Quantenphasen, wie beispielsweise Quan-
tenspinflüssigkeiten oder Zustände frustrierter magnetischer Systeme.
Diese Arbeit berichtet von der Entwicklung eines kontinuierlichen Raman-
Seitenbandkühlschemas sowie der Realisierung des dazu notwendigen experi-
mentellen Aufbaus für den zukünftigen Einsatz in einem Quantengasmikro-
skop zur Bildgebeung durch Fluoreszenz. Mithilfe einer Simulation, basierend
auf der numerischen Berechnung der Zeitentwicklung mithilfe einer Quanten-
mastergleichung, konnten für das entwickelte Abbildungsverfahren eine redu-
zierung des mittleren Vibrationszustands auf 0.04 bestimmt werden, wobei
der Kühlprozess mit einer Zeitkonstante von 266 µs beschrieben werden kann.
Die benötigte Belichtungszeit zur einzelgitterplatzaufgelösten Abbildung be-
trägt 600 ms mit einem einhergehendem Teilchenverlust von 3.3 %.
Momentan kann die Raman-Seitenbandkühlung mit einer Projektion des Im-
pulses auf das vertikale als auch das horizontale Dreiecksgitter gleichzeitig
sowie auch nur auf das Dreiecksgitter betrieben werden. Noch unbeseitigte
Probleme verhinderten die Anwendung im dreidimensionalem Gitter bisher.
Nur im zweidimensionalem Dreiecksgitter war die Anwendung bisher erfolg-
reich. Spektren, welche die erwarteten Seitenbänder auflösen, konnten aufge-
nommen werden und der mittlere Vibrationszustand konnte veringert werden,
was sich im Schmälern des entsprechenden Seitenbandsignals manifestiert. Der
mittlere Vibrationszustand konnte von 1.11 ± 0.08 auf 0.28 ± 0.02 reduziert
werden und die ermittelte Zeitkonstante beträgt 537 ms, was in der selben
Größenordnung wie die der numerisch ermittelten ist.
Mit der zukünftigen Beseitigung der experimentellen Hindernisse sollte die
Anwendung der Raman-Seitenbandkühlung im dreidimensionalen Gitter er-
möglicht werden.





Abstract

Ultracold quantum gas experiments are widely used in order to simulate
a variety of model systems as they are easily accessible and provide a compa-
rably easy and precise control over the system parameters. Especially for the
investigation of solid states they are convenient as defect free lattices of vari-
ous geometries can be constructed by using optical lattices. They may provide
an ideal playground for the investigation of new quantum phases emerging in
these geometries such as frustrated magnetic states or quantum spin liquids.
This thesis reports about the development of a continuous Raman sideband
cooling scheme as well as the realization of the required experimental setup
for the future use in a quantum gas microscope setup for the purpose of fluo-
rescence imaging. A simulation based on a numerical evaluation of a quantum
master equation estimates cooling down to a mean vibrational level of 0.04
with a time constant of 266 µs. The estimated duration necessary for single
site resolved imaging amounts to 600 ms accompanied by a atom loss of 3.3 %.
Currently the Raman sideband cooling can be applied with a momentum pro-
jection for both, the triangular lattice and the vertical lattice, as well as only
for the triangular lattice. Unresolved experimental difficulties prohibited the
application in the three dimensional lattice so far.
Only in the two dimensional triangular lattice the application was successful.
Spectra resolving the expected sidebands were taken and the mean vibra-
tional level was lowered, manifesting as a decreased signal of the correspond-
ing sideband in the spectrum. The mean vibrational number was lowered
from 1.11± 0.08 to 0.28± 0.02 and a time constant, in the same order as the
numerically evaluated one, of 537 ms was determined.
With improvements to come, eliminating the issues that hinder the applica-
tion in the three dimensional lattice, the Raman setup should become suitable
for single site resolved imaging.
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Chapter 1

Introduction

The upcoming of quantum mechanics about 100 years ago was not only a drastic
event for physics as it challenged the former understanding of nature in an unprece-
dented scale with concepts like wave-particle duality or quantum entanglement, but
ultimately was reason for dramatic change in technology and thus society. It has
been fundamental for so many things, such as computers, imaging technology or
just light sources.
Elementary for this development was the study of quantum mechanical systems in
order to exploit the new emerging phenomena. While in comparison simple systems
such as the harmonic oscillator or the hydrogen atom can be solved analytically and
without too much time effort, the situation changes for more complex systems as
many-body systems. Conventional computers may mitigate this problem, but they
also have their limitations.
As a possibility to confront these restrictions Richard P. Feynman proposed the
utilization of quantum mechanical systems in order to simulate them [1]. A basis
for such quantum simulators can be provided by Bose-Einstein condensates (BEC).
They were predicted theoretically in 1924 and 1925 by S. N. Bose and A. Ein-
stein [2, 3], but it took additional 70 years until the experimental challenges were
overcome for their realization. Important steps towards BECs were the realization
of the laser and the subsequent breakthroughs in laser cooling of atoms, such as
the application of magneto optical traps [4] or the discovery of polarization gradi-
ent cooling [5, 6]. For the time being the only possibility to fall below the critical
temperature was evaporative cooling [7, 8]. Finally in 1995 the first BECs were
created [9, 10]. BECs are macroscopic quantum states. First experiments focused
on probing fundamental quantum mechanics such as the observation of collective
excitations [11, 12] or interference [13]. The appearance of vortices in rotating sys-
tems [14] or solitons [15] were observed as well. Soon after, the opportunities pro-
vided by BECs with respect to quantum simulation, especially relating many-body
dynamics, were recognized [16–18]. One of the first examples for such simulations
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CHAPTER 1. INTRODUCTION

was the phase transition from a superfluid to a Mott insulator [19]. Besides Bosons
also Fermions were used to create a degenerate state, the degenerate Fermi gas [20],
and used for many-body simulation [21,22].
One of many directions for the quantum simulation with degenerate Bose gases is
the investigation of magnetism. Frustrated classical magnetism was investigated in
the group of Prof. Sengstock [23]. Not all lattice geometries allow for the inves-
tigation of such frustrated systems. The simplest one allowing it is the triangular
lattice [24]. A triangular lattice is also suited for the investigation of so called quan-
tum spin liquids [25]. These kind of systems are of interest as they might allow for
a better understanding of high temperature superconductivity. But quantum spin
liquids do not have any long range ordering and thereby cannot be investigated by
means of conventional time-of-flight measurements. Here quantum gas microscopes
are of help [26, 27]. They allow for single-site resolved imaging of a optical lattice.
This way local correlations as they are expected for quantum spin liquids could be
observed.
The Quantum Many-Body-Dynamics Research Unit at the RIKEN Center for Emer-
gent Matter Science aims for the investigation of these frustrated systems. They are
currently setting up a quantum gas microscope experiment using 87Rb in a triangu-
lar lattice. Quantum gas microscopes freeze the dynamics of the investigated system
by rapidly increasing the trapping potential. With an appropriate objective single
occupied lattice sites can then be imaged by fluorescence. But as fluorescence is as-
sociated with heating and thereby atom loss, the imaging scheme has to be coupled
with a cooling mechanism. Methods currently used for this purpose are molasses
cooling [26, 27], electromagnetically induced transparency cooling [28, 29], resolved
sideband cooling [30] and Raman-sideband cooling [31, 32]. Due to the limited op-
tical access a Raman sideband cooling system was implemented. Raman-sideband
cooling builds on Raman transitions which is a well-established method to drive
two photon transitions. Recently, Raman transitions were used to cool atoms into
quantum degeneracy solely by means of laser cooling [33,34].
This thesis will present the development of a Raman-sideband cooling scheme and
the setup of the laser system required. It will begin with introducing optical tran-
sitions with atoms in order to explain the physical mechanism describing Raman
transitions. It will continue with the coupling between vibrational states as these
are necessary to lower the vibrational level. Subsequently the transition scheme will
be presented as well as a numerical calculation simulating its time evolution. Fi-
nally the setup will be used for spectroscopy of the sidebands and Raman-sideband
cooling. The structure of this thesis is as described in the following.

Chapter 2 introduces optical transitions starting at the two-level atom to continue
with the multilevel atom and finally arrive at three level transitions. At last
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Raman transitions will be presented. They occur as two photon processes in
three level systems.

Chapter 3 starts with introducing the triangular lattice generated by a planar
three beam interference. It proceeds with the calculation of the Bloch bands
and introduces the coupling between vibrational levels. Finally, the Lamb-
Dicke approximation for the coupling in a deep trap will be presented and
compared to the numerical computed coupling parameter for the triangular
lattice.

Chapter 4 begins with the introduction of the planned scheme for fluorescence
imaging using Raman sideband cooling. It will continue with the introduc-
tion of the Lindblad equation in order to numerically calculate the the time
evolution of the fluorescence scheme. The simulation will be used to obtain es-
timations for the performance of the scheme. In a next step, the laser setup will
be presented as well as the offset-lock system used for stabilizing the relative
frequency of the used lasers. After showing the results of a Rabi oscillation
measurement and explaining the setup at the atom position finally, Raman
sideband cooling will be demonstrated.

Chapter 5 concludes the results of this work and gives an outlook for possible next
steps in the near future.
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Chapter 2

Atom-Light Interaction

Large parts of the work in this thesis are about or build upon optical transitions of
atoms. As it is such an integral part and for many parts it is required to understand
the underlying mechanism, this chapter will begin at the textbook example of the
two-level atom. Building on this, the multilevel atom and three-level transitions will
be introduced. The focus of the three-level transitions will be on Raman transitions.

2.1 The Two-Level Atom

More elaborate systems of atoms interacting with light can be well constructed from
the simple model of the two-level atom in a radiation field. The following section
will discuss just that based on [35,36].

2.1.1 General Schrödinger equation

The general Hamiltonian describing a hydrogen atom in an electromagnetic field
consists of a part which describes the free hydrogen and a part describing the cou-
pling between atom and field. Therefore, it can make sense to write the Hamiltonian
as

H = H0 +H′, with (2.1a)

H0 = p̂2

2µ −
1

4πε0
e2

|r̂| and (2.1b)

H′ = −er̂ÊEM(t). (2.1c)

A semi classical derivation of this Hamiltonian is given in Appendix A. The solutions
to H0 are the well known hydrogen electron orbitals, which can be analytically
calculated as for example done detailed in [37]. For the generalized wavefunctions

|ψ(r, t)〉 =
∑
l

cl(t) |φl(r)〉 e− i
~Elt, (2.2)

5



CHAPTER 2. ATOM-LIGHT INTERACTION

composed of the eigenfunctions |φl(r)〉 e− i
~Elt and the corresponding eigenenergies

El of H0, the Schrödinger equation becomes∑
l

(Elcl(t) + i~ċl(t)) |φl(r)〉 e− i
~Elt =

∑
l

(H0 +H′) cl(t) |φl(r)〉 e− i
~Elt. (2.3)

By multiplication of 〈φk(r)| from the left, and solving for ċk(t), the equation

i~ċk(t) =
∑
l

cl(t) 〈φk(r)|H′ |φl(r)〉 e i
~ (Ek−El)t (2.4)

arises. In general this is not solvable analytically. In these cases time-dependent
perturbation theories, as in [38,39], can be applied.

2.1.2 The Rabi-Problem

If, however, the atom is reduced to a two-level atom, the problem can be solved
analytically. By doing so, the system of differential equations reduces to the two
equations

i~ċg(t) = −ce(t)eE0ε(t) cos(ωt− kz + φ) 〈g| r̂ |e〉 e−iωegt and (2.5a)
i~ċe(t) = −cg(t)eE0ε(t) cos(ωt− kz + φ) 〈e| r̂ |g〉 eiωegt, (2.5b)

where g and e denote the ground and excited state, and ωge = (Eg − Ee) /~. Fur-
thermore, the electromagnetic field was expressed as ÊEM(t) = E0ε(t) cos(ωt−kz),
where E0, ε(t), φ and ω are the electric field amplitude, the polarization unit
vector, a phase constant and the frequency of the electromagnetic field respec-
tively. If the cosines are written in exponential form the exponential terms become
e−i(ωeg+ω)t + e−i(ωeg−ω)t and ei(ωeg+ω)t + ei(ωeg−ω)t. Near the two-level resonance the
approximation ω + ωge = 2ωge can be made. Additionally the frequency difference
will be expressed as

ω − ωeg = δ. (2.6)

Since in this case 2ωeg � δ, the exponential terms oscillating with 2ωeg will quickly
average out on timescales relevant for the transition and will mainly be determined
by the slow δ oscillations. This gives reason for what is called the rotating wave
approximation, which disregards of the fast 2ωeg oscillations. By further setting the
position and phase to zero and using the definition of the Rabi frequency,

Ω def= −eE0

~
〈e| r̂ |g〉 , (2.7)
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2.1. THE TWO-LEVEL ATOM

the Hamiltonian in matrix notation can be written as

H′ = ~
2

(
0 Ωeiδt

Ω∗e−iδt 0

)
. (2.8)

In this treatment the polarization of the electromagnetic field is neglected. Using the
Hamiltonian in the rotating wave approximation, one can find the two differential
equations

c̈g − iδċg + |Ω|
2

4 cg = 0 (2.9a)

c̈e + iδċe + |Ω|
2

4 ce = 0. (2.9b)

For the initial conditions cg(t = 0) = 1, ce(t = 0) = 0 and the normalization
condition the solutions are

cg = (cos
(

Ω′
2 t
)
− i δΩ′ sin

(
Ω′
2 t
)

)eiδt/2 (2.10a)

ce = −i Ω
Ω′ sin

(
Ω′
2 t
)

e−iδt/2. (2.10b)

Ω′ denotes the effective Rabi frequency

Ω′ =
√

Ω2 + δ2. (2.11)

Therefore, the amplitude of the transition is given by

a = Ω
Ω′ = Ω√

Ω2 + δ2
(2.12)

and thus the maximum probability to find the atom in the excited state is

max (c∗ece) = a2 = Ω2

Ω′2 = Ω2

Ω2 + δ2 . (2.13)

In order to get rid of the time dependence in Eq. 2.8, the rotating frame transforma-
tion, |ψ〉 → T̂ |ψ〉, can be applied. The transformation operation can be expressed
as

T̂ (t) =
(

e−iδt/2 0
0 eiδt/2

)
. (2.14)

Since this transformation is time dependent the Hamiltonian has to be extended to
satisfy the Schrödinger equation as shown with Eq. A.34. The Hamiltonian in the
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rotating frame is then

H′R = T̂

(
H′ − i~ ∂

∂t

)
T̂ † = ~

2

(
δ Ω

Ω∗ −δ

)
. (2.15)

The eigenstates of Eq. 2.15 are in general not the ground and excited states |g〉 and
|e〉 anymore. The eigenvalues can be calculated and, in second order series expansion
for Ω, approximated to be

E± = ±~
2

√
|Ω|2 + δ2 ≈ ±~

2

(
δ + |Ω|

2

2δ

)
. (2.16)

However, in the case of |δ| � |Ω| the eigenstates can be appoximatd by |g〉 and |e〉.
In this case the energies are shifted by

∆Eg/e = ∓~ |Ω|2
4δ . (2.17)

Since the Rabi frequency is proportional to the electric field and thereby to the
square root of the light fields intensity, by applying a field with an intensity gradient,
the atoms can feel a local potential and is the cause of the dipole potential.

2.2 Multilevel Atoms

As mentioned in 2.1.1 the electronic wave functions for hydrogen can be found by
deriving the eigenfunctions of Eq. 2.1b. This Hamiltonian can be expanded by
adding the Coulomb interaction terms for all additional electrons with the atomic
core and between each other to describe the system of atoms with more than one
electron. This has the disadvantage that this problem cannot be solved analytically
anymore and has to be solved numerically. As more detailed explained in [37] the
central-field approximation can be used to simplify this problem for alkali atoms by
approximating the Coulomb interaction between electrons with a central-field which
only depends on the relative position between the electrons and the nucleus. This
allows to separate the problem and write the atomic wave function as a product
of single electron wave functions. Subsequently the Hartree-Fock method can be
used to iteratively improve the initial guess for a central-field potential and thus the
atomic wave function.

2.2.1 Energy Scheme

The wavefunctions of the electrons can be separated into an radial and a angular
part an can be completely described by the quantum numbers n, l and ml, denoting

8



2.2. MULTILEVEL ATOMS

the principal, orbital and magnetic quantum numbers. These quantum numbers are
integer values and are restricted to 0 ≤ l < n and |m| ≤ l. In the case of the hydrogen
atom, without any additional interactions than the Coulomb interaction, the states
with the same principal quantum number are degenerate. However, if the spin of
the electron s is considered, there will be an interaction between the spin and the
magnetic field generated by the moving electron. The interaction is proportional to
l̂ · ŝ, where l̂ is the orbital momentum operator and ŝ is the spin operator. This spin-
orbit coupling causes a energy shift for the l 6= 0 cases depending on the orientation
of the spin relative to the magnetic field caused by the electron orbit. For this reason
an additional quantum number, the total electronic angular momentum j = l+ s is
introduced. Together with relativistic corrections the new energy scheme is called
the fine structure. For other atomic species, depending on the spin-orbit coupling
strength, the total electronic angular momentum is either given by J =

∑
i

ji for

bigger atoms or by J = L+S for smaller atoms, where L =
∑
i

li is the total orbital

momentum and S =
∑
i

si is the total spin angular momentum. The corresponding

quantum number J can take the values |L− S| , |L− S + 1| , · · · , |L+ S − 1| , L+S.
The new magnetic quantum number mJ can take the values −J,−J+1, · · · , J−1, J .
Another correction has to be made when the nuclear spin I is taken into account. Its
coupling with the total electronic angular momentum, which is proportional to Î · Ĵ ,
gives rise for a total angular momentum F = I+J . Similar to J the corresponding
quantum number F can take the values |J − I| , |J − I + 1| , · · · , |J + I − 1| , J + I.
The modified energy structure is called hyperfine structure. The related magnetic
quantum number mF can take the values −F,−F + 1, · · · , F − 1, F , which gives a
total of 2F + 1 magnetic sublevels. According to the Zeeman effect, these magnetic
or Zeeman sublevels are not degenerate when an external magnetic field is applied.
The energy shift by an external magnetic field B is given by

∆EZeeman = gFµBmFB (2.18)

with the Landé g-factors

gF = gJ ·
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1) , (2.19a)

gJ = 1 + J(J + 1) + S(S + 1)− L(L+ 1)
2J(J + 1) (2.19b)

and the Bohr magneton µB = e~/2mec. The so far introduced quantum numbers
are sufficient to fully describe the internal atomic state of an atom. The internal
state is denoted as

n2S+1LJ(F,mF ). (2.20)
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CHAPTER 2. ATOM-LIGHT INTERACTION

In this notation L is not written as its integer value but as the corresponding orbital
letter S, P,D, F, · · · .
Alkali atoms have a very convenient internal structure. They consist of the closed
structure of the previous noble gas plus an additional valence electron in the next
S -orbital, so that L = l and S = s for the quantum numbers of the valence electron.
The hyperfine energy scheme for 87Rb is shown in Appendix B.

2.2.2 Dipole Coupling

In order to calculate the coupling between two hyperfine states for a optical transi-
tion it is necessary to calculate the overlap integral for the Rabi frequency

Ω = −eE0

~
〈α′, F ′,m′F | rε |α, F,mF 〉 . (2.21)

For this purpose it is practical to switch into the spherical basis defined by the basis
set

ê±1 = ∓ 1√
2

(êx ± iêy) = −ê∗∓1, (2.22)

ê0 = êz = ê∗0. (2.23)

Written in the new basis components rq = rêq, r becomes

r =
∑
q

(−1)qrqê−q =
∑
q

rqê
∗
q. (2.24)

This way the Rabi frequency can be written as

Ω = −eE0

~
∑
q

ε∗q 〈α′, F ′,m′F | rq |α, F,mF 〉 . (2.25)

εq is the projection of the polarization unit vector on the spherical basis and the
dipole component index q = 0,±1 specifies the polarization type with respect to the
quantization axis êz. As shown for example in [38] the Wigner-Eckart theorem can
be applied for the overlap integral, such that

〈α′, F ′,m′F | rq |α, F,mF 〉 = 〈F ′,m′F |F, 1,mF , q〉 〈α′, F ′||r||α, F 〉 . (2.26)

The first term in Eq. 2.26 is a Clebsch-Gordan coefficient, which is proportional to
the Wigner 3-j symbol and can be expressed as

〈F ′,m′F |F, 1,mF , q〉 = (−1)F ′−1+mF
√

2F + 1
(
F ′ 1 F

m′F q −mF

)
. (2.27)

10



2.2. MULTILEVEL ATOMS

The second term in Eq. 2.26 is a reduced matrix element which itself is proportional
to a further reduced matrix element and the Wigner 6-j symbol by

〈α′, F ′||r||α, F 〉 = 〈α′, J ′||r||α, J〉 (−1)F ′+J+1+I

·
√

(2F ′ + 1)(2J + 1)
{
J J ′ 1
F ′ F I

}
.

(2.28)

The second reduced matrix element can be reduced even further, but also can be
determined empirically. Over the equation

1
τ

= ω3
0e

2

3πε0~c3
2J + 1
2J ′ + 1 |〈α

′, J ′||r||α, J〉|2 (2.29)

it is connected to the decay time of the respective J ′ → J decay. The empirical
determined value for 87Rb can be found in [40]. This way the Rabi frequency is
given by

Ω = −eE0

~
〈α′, J ′||r||α, J〉

∑
q

ε∗qG(F ′, F, J ′, J,m′F ,mF , I, q) (2.30)

with the geometrical factor

G(F ′, F, J ′, J,m′F ,mF , I, q) =(−1)2F ′+J+I+mF
√

(2F ′ + 1)(2F + 1)(2J + 1)

·
(
F ′ 1 F

m′F q −mF

){
J J ′ 1
F ′ F I

}
.

(2.31)

From the Wigner 3-j and 6-j symbols the selection rules for optical transitions can
be extracted, since both only are not zero when the conditions

1. ∆J = J ′ − J = 0,±1, except for J = 0→ J ′ = 0,

2. ∆F = F ′ − F = 0,±1, except for F = 0→ F ′ = 0,

3. ∆mF = m′F −mF = −q
are met. As described in [41] and summarized in Tab. 2.1, if the EM-field is such
that the polarization ε is parallel to the quantization axis êz the interaction drives
a π0 transition with ∆mF = 0. For the case of an EM-field which is moving in the
direction of the quantization axis and has a clockwise rotating or right-circular polar-
ization (RCP) it drives a σ− transition with ∆mF = −1. This case is equivalent to
an EM-field with left-circular polarization (LCP) which is moving contra-directional
to the quantization axis, since relative to the quantization axis the polarization is
rotating in the same direction for both cases. In the case of a LCP EM-field which
moves in the direction of êz a σ+ transition is driven. Analog to the σ− the σ+

transition is also driven for propagation contra-directional to êz with RCP. Linear
polarization along êx/y drive the transitions π± = (σ+ ± σ−)/

√
2.

11



CHAPTER 2. ATOM-LIGHT INTERACTION

Polarization Transition ∆mF

RCP k �� êz, LCP k �� êz σ− −1
LCP k �� êz, RCP k �� êz σ+ +1
ε ‖ êz π0 0
ε ‖ êx π+ = (σ+ + σ−)/

√
2 ±1

ε ‖ êy π− = (σ+ − σ−)/
√

2 ±1

Tab. 2.1: Correspondence between polarization, transition type and change of the magnetic
quantum number. k describes the wave vector of the EM-field. From [41].

2.2.3 Spontaneous Decay

The previously derived geometrical factor G in Eq. 2.31 shows a symmetry given by

∑
q,F

|G(F ′, F, J ′, J,m′F ,m′F + q, I, q)|2 = 2J + 1
2J ′ + 1 . (2.32)

The same factor appears in Eq. 2.29 for calculating the decay rate of a fine structure
state. According to [40] this can be interpreted as that every magnetic hyperfine
level of the same fine structure state decays with the same rate but branches into
different ground states with different decay rates. This relation can thus be used to
calculate the decay rate for a specific decay path with

ΓF,mF ,F ′,m′
F

= 1
τ

2J ′ + 1
2J + 1G(F ′, F, J ′, J,m′F ,mF , I,mF −m′F ). (2.33)

2.3 Three-Level Transitions

This section will mainly address the phenomenon of Raman transitions, which oc-
cur in the three level model. A brief note will be given about coherent population
trapping (CPT), as it might cause slowing or a total freezing of transitions if not
considered. The three level model offers a couple more interesting phenomena be-
yond these two, such as electromagnetically induced transparency [42] or stimulated
rapid adiabatic passage [43]. These and other three-level problems are introduced
in [36], which, together with [41], also serves as a basis for this section.

2.3.1 Interaction Hamiltonian

As explained in [41] the Hamiltonian for a three level system with two different
EM-fields coupling them can be described with

H = ~
2

 2ω1 0 Ω11eiωL1t

0 2ω2 Ω22eiωL2t

Ω∗11e−iωL1t Ω∗22e−iωL2t 2ω3

 (2.34)
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2.3. THREE-LEVEL TRANSITIONS

where the position and the constant phase term in the argument of the oscillatory
term cos(ωt− kr + φ) where set to zero and the rotating wave approximation was
already made. The Hamiltonian is the combination of two two-level couplings with
both couplings sharing the same excited state. By using the transformation

T̂ = eiH0t/~, with (2.35)

H0 = ~

ω1 0 0
0 ω2 0
0 0 ω3

 , (2.36)

the Hamiltonian can be written as

H = ~
2

 0 0 Ω11e−i∆11t

0 0 Ω22e−i∆22t

Ω∗11ei∆11t Ω∗22ei∆22t 0

 , (2.37)

where ∆nm = ω3 − ωn − ωLm.

2.3.2 Raman Transition

Technically, in Eq. 2.34 the off-diagonal non zero elements are missing an additional
term, but after some further rewriting these terms will only contribute on the diag-
onal elements. They will be accounted for later. In Eq. 2.37 the ∆22 detuning can
be expressed as

∆22 = ∆ + δ, with (2.38)
δ = ωL1 − ωL2 + ω1 − ω2 and (2.39)

∆ = ∆11, (2.40)

such that

H = ~
2

 0 0 Ω11e−i∆t

0 0 Ω22e−i(∆+δ)t

Ω∗11ei∆t Ω∗22ei(∆+δ)t 0

 . (2.41)

With this Hamiltonian the differential equations

iċ1(t) = Ω11

2 e−i∆tc3(t) (2.42a)

iċ2(t) = Ω22

2 e−i(∆+δ)tc3(t) (2.42b)

iċ3(t) = Ω∗11
2 ei∆tc1(t) + Ω∗22

2 ei(∆+δ)tc2(t) (2.42c)

13



CHAPTER 2. ATOM-LIGHT INTERACTION

can be obtained. With some assumptions this three-level problem can be reduced
to an effective two-level problem. The first assumption is to drive a far detuned
Raman transition, which can be expressed as ∆ � |Ω11| , |Ω22| , |δ|. In this case,
considering |3〉 an excited state, which decays spontaneously, the population of |3〉
can be neglected. Secondly it is assumed that the oscillation of ċ1 and ċ2 is much
slower than the oscillation of ċ3. In this assumption c1 and c2 can be seen as constant
on the relevant timescales for ċ3. With constant coefficients c3 can be evaluated by
integrating ċ3, which gives

t0+t∫
t0

ċ3(t) = [c3(t0 + t)− c3(t0)] = −
[

Ω∗11
2∆ ei∆tc1(t) + Ω∗22

2∆ ei∆11tc1(t)
]
. (2.43)

It was also used that ∆11 � δ. With this relation the differential equations can be
written as

iċ1(t) = −|Ω11|2
4∆11

c1(t)− Ω11Ω∗22
4∆11

eiδtc2(t) (2.44a)

iċ2(t) = −Ω22Ω∗11
4∆11

e−iδtc1(t)− |Ω22|2
4∆11

c1(t) (2.44b)

iċ3(t) = Ω∗11
2 ei∆11tc1(t) + Ω∗22

2 ei(∆11+δ)tc2(t). (2.44c)

The fast ∆11 oscillations for ċ3 quickly average out. Therefore, ċ3 can be disregarded
and the problem reduces to an effective two-level problem, which is described by the
Hamiltonian

H = −~
(

ΩAC
1 ΩReiδt/2

Ω∗Re−iδt/2 ΩAC
2

)
. (2.45)

The Raman-Rabi frequency is given by

ΩR = Ω11Ω∗22
2∆ (2.46)

and the light shift is given by

ΩAC
n =

∑
a

|Ωna|2
4∆na

. (2.47)

Here n indicates the internal state on which the respective EM-field, indicated by
a, acts on. The transition amplitude can be calculated in a similar manner as done
in 2.1.2. As derived in [44], the amplitude is than given by

a = ΩR

Ω̃R

= ΩR√
Ω2
R + (δAC − δ)2

, (2.48)
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2.3. THREE-LEVEL TRANSITIONS

where
Ω̃R =

√
Ω2
R + (δAC − δ)2 (2.49)

is the effective Rabi frequency and

δAC = ΩAC
1 − ΩAC

2 (2.50)

is the differential light shift.
The two Hamiltonians Eq. 2.41 and Eq. 2.45 are simulated for comparison in Fig. 2.1.
It can be observed, that even though simulated with two different Hamiltonians,
but the same parameters, the oscillation frequency and amplitude between the two
ground states is nearly the same. And in the case of the three level system the
population in the excited state is negligible.
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Fig. 2.1: Numerical calculation of a closed three level systems time evolution demonstrating
Raman transitions. The states |g1〉 and |g2〉 are coupled to |e〉 by −50 GHz detuned lasers. In (a)
the time evolution is explicitly simulated with the three level system. (b) shows the time evolution
of the effective two level system. It can be seen that for the same parameters the two different
simulations have nearly the same oscillation frequency and amplitude.

With a multilevel atom the Raman transition can go over multiple routes as the
EM-field couples the ground states to multiple excited hyperfine states. In this case
a vector notation for the Rabi frequency can be used. For the single EM-field Rabi
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CHAPTER 2. ATOM-LIGHT INTERACTION

frequency this looks like

ΩF =
∑
F ′

Ω|F,mF 〉|F ′,m′
F 〉êi, (2.51a)

ΩF = −eE0

~
〈α′, J ′||r||α, J〉

∑
F ′

G(F ′, F, J ′, J,m′F ,mF , I, q)êi (2.51b)

= −eE0

~
〈α′, J ′||r||α, J〉GF . (2.51c)

F denotes the hyperfine ground state under investigation and F ′ indicates the hy-
perfine states of the considered excitation path. Eq. 2.51b and Eq. 2.51c only apply
for pure polarization q. In the limit where the Raman detuning from the excited
state is large compared to the hyperfine splitting of the excition line, ∆R � ∆HF ,
the detuning to all excited hyperfine states can be considered the same and the
Raman Rabi frequency can be written as

ΩR = ΩF1 ·Ω∗F2
2∆ (2.52a)

= −e
2E1E

∗
2

2∆~2 |〈α
′, J ′||r||α, J〉|2 |GF1 ·GF2| . (2.52b)

A few statements about the Raman transition path can be made by investigating
the term |GF1 ·GF2|. First of all, for a transition to work, the two coupled mag-
netic ground states have to be coupled by matching q. Since q = 0,±1 a theoretical
maximum of |∆mF | = 2 is possible. Also, since for one photon transitions the F
quantum number can only change by one, the maximum |∆F | = 2. 87Rb only has
two hyperfine ground states, so the maximum |∆F | = 1.
By calculating |GF1 ·GF2| for the respective transitions, it can be seen that it gets

Transition Coupled ground states via
σ− − σ− |F1,mF 〉 ↔ |F2,mF 〉 |F ′,mF − 1〉
σ+ − σ+ |F1,mF 〉 ↔ |F2,mF 〉 |F ′,mF + 1〉
π0 − σ− |F1,mF 〉 ↔ |F2,mF + 1〉 |F ′,mF 〉
π0 − σ+ |F1,mF 〉 ↔ |F2,mF − 1〉 |F ′,mF 〉
π0 − π∓ |F1,mF 〉 ↔ |F2,mF + 1〉

|F1,mF 〉 ↔ |F2,mF − 1〉 |F
′,mF 〉

π± − π∓ |F1,mF 〉 ↔ |F2,mF 〉 |F ′,mF − 1〉
|F ′,mF + 1〉

Tab. 2.2: Raman transition paths. F ′ denotes all excited hyper fine levels that are couple to both
F1 and F2 by the transition under investigation. From [41].

zero for transitions with |∆mF | = 2. For the exact calculation with the specific
detunings for the respective excited hyperfine levels this transition will still be pos-
sible but depending on the detuning strongly suppressed. Expressed in the symbols
from Tab. 2.1 these transitions are labeled σ±−σ∓ and π±−π±, where each symbol
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2.3. THREE-LEVEL TRANSITIONS

describes the transition type of the respective EM-field. This is also the case for
π0 − π0 transitions, which would drive ∆mF = 0 transitions.
Possible transition paths are those denoted by σ± − σ± and π± − π∓, which drive
∆mF = 0 transitions, and π0−σ± and π0−π±, which drive ∆mF = ±1 transitions.
The not suppressed transitions are summarized in Tab. 2.2.

2.3.3 Coherent Population Trapping

As coherent population trapping is not of primary interest for the goal of developing
a Raman sideband cooling scheme, but holds the potential to strongly influence it
if not considered, it is just mentioned here that in the case of a resonant coupling of
two states with a third state, a time independent eigenstate exists. Even if initially
not starting in this eigenstate, spontaneous emission may drive the system into said
state eventually. This can be avoided by driving one of the transitions slightly
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Fig. 2.2: Numerical calculation of a closed three level systems time evolution demonstrating
coherent population trapping. The states |g1〉 and |g2〉 are coupled to |e〉 by resonant lasers. In
(a) coherent population trapping due to spontaneous emission can be observed. After a certain
period of time the spontaneous emission leads the atom to occupy an eigenstate of the three level
system. In this eigenstate no excitation can be observed. The ratio of the occupation probabilities
of the eigenstate is determined by the ratio of the Rabi frequencies driving the transitions. In (b)
a sufficiently high detuning to one of the lasers is introduced. All other parameters are equal to
(a). The system still goes into a stable state due to decoherence from the spontaneous emission,
such that after a while no change of the probability is observable but it can be seen that there still
is a probability to find an excited atom.

detuned in the order of half the excited state linewidth. In Fig. 2.2 a three-level
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CHAPTER 2. ATOM-LIGHT INTERACTION

system with both beams in resonance and with one beam off resonance is shown to
visualize how over time the system is either driven in the trapped eigenstate or still
exhibits excitation probability.

2.4 Conclusion

This chapter covered the optical transitions that will be of importance later on.
Beginning with the two-level textbook example, the Rabi frequency is defined and
the dynamics of the system are investigated. Proceeding, the picture was extended
to that of a multilevel atom. With the help of convenient geometrical relations
the Rabi frequencies between specific magnetic hyperfine states can be calculated.
Furthermore, the branching ratios of the excited states were derived. In the last
section Raman transitions were discussed, especially for the far detuned regime,
were the Rabi frequencies can be written as vectors for the corresponding paths. A
short note on coherent population trapping was given to avoid possible problems
with more elaborate transition schemes.
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Chapter 3

Optical Lattice

If in addition to the internal transitions also transitions between quantized motional
state are supposed to take place, it is necessary to know the eigenfunctions of the
system to calculate the expected coupling. As the quantum gas microscope experi-
ment under construction will work with a optical lattice as a basis for the physical
experiment and with the same lattice as a pinning lattice for single site resolved
fluorescence imaging. The eigenfunctions of a periodic system, as lattices are, are
described by the delocalized Bloch functions. The Bloch functions can be used to
obtain the localized Wannier functions. The coupling between different motional
states in the lattice is then given by the overlap integral of the respective Wannier
functions.
As it is the geometry implemented at this experimental setup in the following the
triangular lattice will be introduced and the Bloch theorem will be applied to cal-
culate its band structure.
The corresponding Bloch functions are delocalized wave functions. However, the
wave functions of strongly confined particles are better expressed with localized
wave functions. Therefore the Wannier functions for the first two bands will be
calculated and used to determine the expected coupling between neighboring vi-
brational levels. This numerical evaluation will be compared to the estimation in
the Lamb-Dicke regime, which is often used for similar purposes in potentials deep
enough, that they can be approximated by a harmonic trap.

3.1 Triangular Lattice

Before any calculations about the coupling can be made it is necessary to calculate
the the trapping potential. As explained in [45], the dipole potential for far-off-
resonant light is given by

Udip = 3πc2

2ω3
0

Γ
∆I = αI, (3.1)
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CHAPTER 3. OPTICAL LATTICE

where ω0 is the resonance frequency and Γ the decay rate for the considered tran-
sition. ∆ = ω − ω0 is the detuning from the resonance frequency. I describes the
intensity of the used electromagnetic field. For simplicity in the following discussion
the considered light fields are treated as plane waves. In general the transversal in-
tensity distribution is spatially dependent, which would make the potential spatially
dependent as well.
In [24] the first realization of a triangular lattice is demonstrated by using three
laser beams angled 120° to each other in the same plane. The superposition of the
electric fields can then be given by

E(r, t) =
3∑
i

E0,i exp(−i(ωt− kir − φi)). (3.2)

The intensity is proportional to the absolute square of the electric field and can be
written as

I(r) = 1
2ε0c |E(r, t)|2 =

∑
i

∑
j

√
I0,iI0,j cos(∆ki,jr + ∆φi,j). (3.3)

The ∆ki,j and ∆φi,j are the relative momenta and constant phase offsets respectively.
As the phase offsets just shift the lattice, they can be set to zero as it does neither
influences the eigenstates except for a spatial displacement. As the wave vectors are
rotated by 120° relative to each other, they can be represented as

k1 = kLey, (3.4a)

k2 = kL

(√
3

2 ex −
1
2ey
)

and (3.4b)

k3 = kL

(−√3
2 ex −

1
2ey
)
, (3.4c)

where kL is absolute of the laser wave vector. These wave vectors can then be used
to calculate the primitive reciprocal lattice vectors

G1 = k1 − k2 = G

(
−1

2ex +
√

3
2 ey

)
, (3.5a)

G2 = k3 − k1 = G

(
−1

2ex −
√

3
2 ey

)
and (3.5b)

G3 = − (G1 +G2) = k2 − k3 = Gex, (3.5c)
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with G =
√

3kL. Using the equations Eq. 3.1, Eq. 3.3 and Eq. 3.5 and assuming
equal intensities for all three beams the potential can be expressed as

U(r)
αI0

= 3 + 2
3∑
i

cos (Gir)

= 3 + 2
[
cos
(
G

(
−1

2x+
√

3
2 y

))
+ cos (Gx)

+ cos
(
G

(
−1

2x−
√

3
2 y

))]
= 3 + 2

[
cos (Gx) + 2 cos

(
1
2Gx

)
cos
(√

3
2 Gy

)]
.

(3.6)

As it is more convenient for the calculation of the Bloch functions to write the
potential in units of the recoil energy

ER = ~2k2
L

2m (3.7)

the normalized potential is given by

U(r)
U0

= 1
3 + 2

9

[
cos (Gx) + 2 cos

(
1
2Gx

)
cos
(√

3
2 Gy

)]
, (3.8)

with U0 = sgn(∆)sER. In Fig. 3.1 the potential of a triangular lattice is shown.
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Fig. 3.1: Triangular lattice potential. The shown potential corresponds to the potential given by
a red detuned three beam interference where the beams lie in the same plane with angles of 120°
between the wave vectors. The position is given in units of the laser wavelength.
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By a series expansion at the origin a harmonic approximation can be obtained with

UHO(r)
U0

= 1− 1
6G

2 (x2 + y2)
= 1− 1

2k
2
L

(
x2 + y2) . (3.9)

In the case of red detuned beams, the signs would be inverted. If this approximation
is compared to the potential of the harmonic oscillator

1
2mω

2 (x2 + y2) = 1
2sk

2
LER

(
x2 + y2) , (3.10)

the relation
~2ω2

2E2
R

= s (3.11)

can be obtained.
For the triangular lattice implemented at the experiment a trap frequency for the
triangular lattice of about 130 kHz was measured by modulation spectroscopy. This
corresponds to a trap depth of 2059ER.

3.2 Band Structure and Wannier Functions

In such a periodic lattice the eigenfunctions of a particle can be described by the
Bloch functions [46, 47]. The Bloch theorem can be used to find the eigenfunctions
for systems described by a Hamiltoninan

H0 = p2

2m + U(r) = ~2∇2

2m + U(r), with (3.12a)

U(r) = U(r + T ). (3.12b)

T is a translation vector given by T =
∑
i

niai. The ai describe the basis vectors of
the lattice which can be easily found over the relation Giaj = 2πδi,j to be

a1 = a

(√
3

2 ex + 1
2ey
)

and (3.13a)

a2 = a

(
−
√

3
2 ex + 1

2ey
)
, (3.13b)

where a = 2
3λL. For such a system the eigenfunctions are then given by

ψn,q(r) = un,q(r) exp(iqr). (3.14)

As the potential the un,q(r) obey the translation symmetry un,q(r) = un,q(r + T ).
n denotes the band index and q is the quasi-momentum. As done in [48], by using
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a linear combination of plane waves as a ansatz the un,q(r) can be written as

un,q(r) = 1√
N

∑
K

c
(n,q)
K exp (−iKr) (3.15)

and the potential as
U(r) =

∑
K

UK exp (−iKr) . (3.16)

The sum overK =
∑N

i niGi is a sum over the total number of occupied lattice sites
N . The UK are the Fourier components of the lattice potential and as elaborated
in [48] they are

U0 = −1
3V0 and (3.17a)

U±G1,±G2,±G3 = −1
9V0. (3.17b)

As further explained by using Eq. 3.12a, Eq. 3.14, Eq. 3.15, Eq. 3.16 and a clever
substitution with q̃ = q/ |b| , K̃ = K/ |b|, Ẽ(n,q) = (~ω(n,q) + 1/3V0)/ER and Ṽ0 =
V0/ER the problem becomes(

3
(
q̃ − K̃n,m

)2 − Ẽ(n,q̃)
)
c(n,q̃)
n,m

− 1
9 Ṽ0

∑
n′,m′

(
δn,n′δ|m−m′|,1 + δm,m′δ|n−n′|,1 + δ|n+m|,|n′+m′|δ|m−m′|,1

)
c

(n,q̃)
n′,m′

= 0.

(3.18)

~ωn,q are the eigenernergies of the corresponding band and quasi-momentum. The
reciprocal lattice vectors are expressed as K = nG1 + mG2. In this form it is easy
to calculate the eigenenergies numerically and thereby the band structure of the
lattice. The band structure of a shallow and a deep lattice is depicted in Fig. 3.2.
For a deep lattice the band structure becomes similar to the energy spectrum of
a harmonic oscillator with its equidistant energy bands. In the triangular lattice
these almost equidistant bundles of energybands are not fully degenerate as in the
harmonic oscillator.
The next step towards calculating the coupling between these bundles are to obtain
the Wannier functions. Therefore first the Bloch functions have to be calculated.
This is also relatively easy done by calculating the eigenstates c(n,q)

K to the corre-
sponding eigenvalues and inserting them in Eq. 3.15. The Wannier functions can be
computed from these as

wn(r −R) = 1√
N

∑
q

un,q(r) exp(ik(r −R)). (3.19)
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Fig. 3.2: Calculated band structure for a triangular lattice. In (a) the band structure of the
first 6 bands for a shallow lattice with a trap depth of 1ER is shown. (b) and (c) both show the
band structure for a lattice with a potential of 2059ER. (b) shows the lowest 55 bands which seem
bundled to 10 bands with approximately equidistant energy gaps between them. (c) is a magnified
view on the ninth bundle from the bottom in (b). It seems as if the bundle consists of five bands,
but they are nine in total as the lower four lines consist of two overlapped bands each. For higher
bundles the energy gap slowly decreases. The gap between the lowest and the next highest bundle
is 63.4ER. For the gap between the ninth and tenth bundle it decreased to 58.5ER. The Γ, M and
K point positions in the first Billouin zone are illustrated in (a).

However, the Bloch functions are only determined up to a global phase. While the
choice of the phase is irrelevant for the Bloch state and its properties, the choice
of the phases does strongly effect the Wannier functions. For a inconvenient choice
of phases the Wannier function does not become localized. The desired kind of
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3.3. COUPLING BETWEEN SIDEBANDS

Wannier functions is the so called maximally-localized. Until now it could only be
proven that there is exactly one Wannier function that is maximally-localized [49]
in one dimensional lattices. But there are various efforts to numerically calculate
maximally-localized Wannier functions [50–53]. As this goes far beyond what is
required, this will not be further discussed. In order to continue, the Wannier
functions were calculated by using a MATLAB code presented in [54]. The obtained
Wannier functions for the first and second band are shown in Fig. 3.3. The MATLAB
program used to calculate the Wannier functions tries to obtain the maximally-
localized Wannier function by minimizing its spread. During this process it can
happen that the algorithm gets stuck in a local minimum. As the authors of the
program state they had more success to avoid landing in a local minimum with
degenerate bands by randomly picking a the Bloch state of one of the degenerate
band as they are equally valid solutions. Due to this process the Wannier functions
may be rotated arbitrary.
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Fig. 3.3: Wannier functions of a triangular lattice with a trap depth of 2059ER. A total of 41×41
lattice sites were considered. (a) and (b) show the first and second bands Wannier functions of a
triangular lattice respectively. The wave function of the second band had to be rotated in order
to set the parity axis along the y-axis. The position is given in units of the laser wavelength.

3.3 Coupling between Sidebands

With obtaining the Wannier functions, the coupling between the first and second
band can be calculated. According to [55] the coupling term for two bands with
indices n and m is given by

M = 〈n|exp(ikr)|m〉 . (3.20)

In the case of the harmonic oscillator, for neighboring bands the coupling becomes
zero with |k| = 0 as one of the wave functions has a positive and the other a
negative parity with respect to the parity axis. The coupling becomes also zero if
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CHAPTER 3. OPTICAL LATTICE

the projected momentum is aligned along the parity axis. In the case of the Wannier
functions in Fig. 3.3 the y-axis is the parity axis. The wave function of the second
band has negative parity as it is antisymmetric with respect to reflection at the
parity axis. But with a momentum perpendicular to the parity axis, along x, the
parity is broken and the coupling becomes nonzero. In the so called Lamb-Dicke
regime this coupling can be approximated. Since only the momentum component
parallel to the parity axis is of relevance, the coupling can be written as

M = 〈n|exp(ikxx)|m〉 . (3.21)

For a harmonic oscillator the position operator can be expressed in terms of the
ladder operators as

x = x0(â+ â†). (3.22)

x0 is the spread of the harmonic oscillator ground state

x0 =
√

~
2mωx

, (3.23)

with ωx the trap frequency along the x-axis. The Lamb-Dicke parameter is now
defined as

η = kxx0 (3.24)

and a system is considered in the Lamb-Dicke regime if η2 � 1. As elaborated
in [55,56] the resulting coupling using Eq. 3.22 and Eq. 3.24 can be given by

M = exp
(
−η

2

2

)√
n!
m!η

m−nLm−nn (η2), (3.25)

for the case of m being larger than n. Ln(x) are the Laguerre polynomials. In the
Lamb-Dicke regime the higher order terms, m − n ≥ 2, become sufficiently small
and can be neglected and the coupling can be approximated by

M = η
√
n for n→ n− 1, (3.26a)

M = 1− 2n+ 1
2 η2 for n→ n and (3.26b)

M = η
√
n+ 1 for n→ n+ 1. (3.26c)

In the case of optical transitions the momentum projection is given by the photon
recoil momentum and therefore the Lamb-Dicke parameter can also be described by
η =

√
ER

~ωx
, using the recoil energy ER. The total coupling for optical transitions

incorporating sidebands is given by the product of the coupling between vibrational
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3.3. COUPLING BETWEEN SIDEBANDS

states and the optical coupling.This can be expressed as the effective Rabi frequency

Ωeff = MΩ0. (3.27)

As the vibrational states differ by a certain frequency, transitions changing the vi-
brational level appear as sidebands in a spectrum. Only considering the vibrational
levels a reduction of the sideband is associated with the loss of energy and thereby
can be quantified by a negative frequency. Therefore it can be called the red side-
band. However, depending on the internal transition accompanying the sideband
transition the vibrational level lowering transition can be the one with the larger
frequency compared to the bare internal transition and would therefore be called the
blue sideband. Since Raman-sideband cooling exploits these sideband transitions in
order to cool and to avoid possible confusion vibrational level lowering transitions
associated with the cooling sideband (CSB) while increasing transitions are asso-
ciated with the heating sideband (HSB). In order to see how well the Lamb-Dicke

0 0.5 1 1.5 20

0.1

0.2

0.3

Momentum Projection [kRaman]

La
m

b-
D

ick
e

pa
ra

m
et

er
η

Triangular Lattice
Harmonic Oscillator
Lamb-Dicke Approx.

Fig. 3.4: Vibrational level coupling. Depicted are the vibrational couplings calculated numerically
for the triangular lattice with Wannier functions, also calculated numerically for the harmonic
oscillator with the spatial eigenfunctions and estimated by the Lamb-Dicke approximation. As
this are the couplings between the ground state and the first excited state, the calculated coupling
equals the Lamb-Dicke parameter. The trapping potential used is 2059ER. As the coupling
parameter for the triangular lattice only differs by 1.1 % from the harmonic oscillator, they are
almost equally good described by the Lamb-Dicke parameter.

approximation works for a deep triangular lattice, the coupling will be calculated
numerically by using the Wannier functions for the ground state and the first ex-
cited state and it will be compared to the Lamb-Dicke parameter and a numerical
calculation for a two dimensional harmonic oscillator. With Eq. 3.11 there is already
a relation given for the lattice depth and a harmonic approximation. But looking at
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the triangular lattice, it can be seen that the barrier between nearest neighbors does
not correspond to the calculated value with Eq. 3.11. Precisely it is given by 8/9 of
that value. With a lower trap frequency lower energies are associated, wherefore it
might be more reasonable to calculate the harmonic oscillator eigenfunctions for a
trap frequency corresponding to 8/9 of the triangular lattice depth. The results for
the calculated Lamb-Dicke parameters under these conditions are shown in Fig. 3.4.
The coupling for the triangular lattice matches that of the harmonic oscillator very
well with a difference of 1.1 % at a trapping potential of 2059ER. Therefore it is
appropriate to estimate the vibrational coupling in a triangular lattice in the Lamb-
Dicke regime with the Lamb-Dicke parameter.

3.4 Conclusion

By calculating the trapping potential for a planar three beam configuration with
120° between each other and by calculating the harmonic approximation of a po-
tential minimum, a relation between the trap depth and the trap frequency could
be derived. This was used to calculate the trap depth of 2059ER with the trap
frequency of 130 kHz obtained by modulation spectroscopy.
With the help of the Bloch theorem it was possible to numerically calculate the
band structure of the triangular lattice and to show that for large trap depth the
energy spectrum become similar to that of a harmonic oscillator.
Subsequently, the coupling between vibrational states in an harmonic oscillator was
approximated for the Lamb-Dicke regime. These coupling terms can be used to
calculate the Rabi frequency for sideband transitions. Finally, the coupling approx-
imated by the Lamb-Dicke approximation was compared to the couplings computed
numerically for the harmonic oscillator and the triangular lattice to find that both
are equally well approximated.
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Chapter 4

Raman-Sideband Cooling

This chapter focuses on Raman-sideband cooling. Starting at the transition scheme
that was developed and the thoughts that lead to this specific scheme it will continue
with a simulation of mentioned scheme by numerically calculating the time evolution
of the density matrix describing the system by using a quantum master equation.
Furthermore, the experimental setup necessary to apply this Raman-sideband cool-
ing scheme will be presented as well as the troubles encountered during the first
operations of the setup. Finally the successful application of Raman-sideband cool-
ing will be demonstrated.

4.1 Transition Scheme

For a Raman sideband cooling scheme the the most crucial parameters are the Rabi
frequency of the Raman transition and the transition amplitude. They are deter-
mined by the chosen transition path and the intensities of the lasers driving the
Raman transition. The transition path is important insofar it determines the geo-
metrical coupling factors |GF1 ·GF2|. According to [44], for F changing transitions
these geometrical terms can be expressed as

|GF1 ·GF2| =
|A(J ′)|

3(2J ′ + 1)

√(
I + 1

2

)2

−m2
F and (4.1a)

|GF1 ·GF2| =
|A(J ′)|

3(2J ′ + 1)

√
T

(
I + 1

2 −mF

)
, with (4.1b)

A(J ′) =
{
−2 for D1 transitions
−1 for D2 transitions

. (4.1c)

I is the nuclear spin and T (n) is the nth triangular number. Eq. 4.1a is applied
for transitions with q1 = 1 and q2 = 1, whereas Eq. 4.1b applies for transitions
with q1 = 0 and q2 = 1. By evaluating these equations, it shows that transitions
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coupling the, absolute wise, highest mF states are the strongest regarding the ge-
ometrical coupling factors. Moreover F changing transitions are stronger than F

keeping ones. In the case of 87Rb a Raman coupling between |2,±2〉 and |1,±1〉
is 1.73 times stronger than between |2,±2〉 and |2,±1〉. On the other hand the
resonance frequency of the first mentioned transition is three times more sensitive
to the magnetic field than the latter one. Even though the A(J ′) is twice as large
for D1 transitions with 87Rb, the overall difference between D1 and D2 transitions is
not, since the reduced dipole coupling 〈α′, J ′||r||α, J〉 is different for the two tran-
sitions. The ratio of the absolute square of the reduced dipole coupling for the D1

and D2 transition is only slightly bigger than 0.5. From the perspective of transition
strength it makes no difference whether the D1 or D2 transition is taken. However,
it is more convenient to take the D1 transition as the basis for the Raman transition,
considering that the Raman light has to have a significantly higher intensity than
the pumping light for the fluorescence imaging, which in our case uses the D2 line
and thus is easily separated from the Raman light by a simple filter. To maximize
the amplitude of the Raman transition, according to Eq. 2.48, the differential light
shift has to be minimized. In order to do this the relative intensity between the two
Raman lasers has to be adjusted such that the light shifts get equal. Since only the
intensity ratio is important for the amplitude, the intensities can just be scaled to
achieve higher Rabi frequency.

ν

ν + 1

ν − 1

ν

ν + 1

ν − 1

ν

ν + 1

ν − 1

R1

R2

RP

|g1 〉

|g2 〉

|e〉

Fig. 4.1: Simplified vibrational transition scheme for continuous Raman sideband cooling. The
Raman beams, R1 and R2, introduce a coupling between two neighboring vibrational states of
different internal states |g1, ν〉 and |g2, ν − 1〉. A resonant laser (RP) excites the atom so that
it can decay back into the initial internal state while keeping the lowered vibration state via
|e, ν − 1〉. Even though excitation and spontaneous emission also couples different vibrational
states the majority of atoms keeps the vibrational state during these processes.
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4.1. TRANSITION SCHEME

The Raman transition to be implemented will couple two magnetic hyperfine ground
states and simultaneously two neighboring vibrational states. Since the Raman
transition is a coherent process, the atoms will just oscillate between these two vi-
brational levels and no cooling will have taken place. To continuously lower the
vibrational state, resonant optical transitions have to be applied, which can also
cause a change of the vibrational state by ±1 but mainly keeps it constant as does
the subsequent spontaneous emission. If this process begins in the state |F,mF , ν〉,
the Raman coupling transitions the atoms into |F ′,m′F , ν − 1〉, after which the atoms
are pumped back into |F,mF , ν − 1〉, loosing one vibrational quantum. This process
is shown in Fig. 4.1.
One scheme that would be well suited for such an cycle, taking the previous consid-
erations into account, is a π0−σ− transition between 5S1/2 |2,−2〉 and 5S1/2 |1,−1〉
and subsequent pumping to 5S1/2 |2,−2〉 by σ− polarized light over 5P3/2 |2,−2〉.
Since the 5P3/2 |2,−2〉 state, besides 5S1/2 |2,−2〉 and 5s1/2 |1,−1〉, can decay into
5S1/2 |2,−1〉, a second pumping beam coupling this state to the same excited state
is necessary in order to keep all atoms in the cycle. This second pumping beam has
to be sufficiently detuned in order to avoid coherent population trapping as shown
in 2.3.3. With the prospect of fluorescence imaging, a third beam will be needed,
which couples 5S1/2 |2,−2〉 and 5P3/2 |3,−3〉, which is a closed transition, so that
fluorescence light from the vibrational ground state atoms in 5S1/2 |2,−2〉 can be
collected, which is a dark state for the previously mentioned cooling cycle.
This scheme would have two requirements for the Raman beams. One would be,
that the π0 beam is aligned perpendicular to the quantization axis êz and the other
would be that the σ± beam is aligned along the quantization axis. Those require-
ments would restrict the range of possible momenta projected onto the atoms. It is
even more restricted by the optical access to the atoms in the glass cell. A transition
scheme with a π0 − π± coupling has less restrictions since the π± only has to be
aligned perpendicular to êx or êy. This means that only half of the light in the
π± beam would contribute to the desired transition and also that a coupling be-
tween 5S1/2 |1,−1〉 and 5S1/2 |2, 0〉 is existent. Anyhow, this new transition causes
the differential light shift to become zero and thereby allowing any intensity ratio
between the two Raman beams without any negative impact. For Rabi frequencies
in the range of about 20 kHz the atomic population taking part in this undesired
σ+-Raman path can be neglected because even for an external magnetic field of 1 G
the detuning for this transition is 1.4 MHz and according to Eq. 2.48 the transition
amplitude becomes about 0.2 ‰. Including the vibrational coupling it would be even
smaller. A schematic showing which internal states are coupled by which lasers is
illustrated in Fig. 4.2. The Raman transition works for the not mentioned ground
states as well, but as for the σ+-Raman path the large detunings compared to the
Rabi frequncies only establish weak couplings. Furthermore, all atoms finding their
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Fig. 4.2: Internal transition scheme for continuous Raman sideband cooling. The illustration
shows the magnetic hyperfine sublevels of the 5S1/2, 5P1/2 and 5P3/2 states of 87Rb and the
transitions supposed to be driven by the lasers between the respective energy levels. It is indi-
cated, that Raman 2, indicated by R2(±), drives σ+ and σ− transitions since its polarization is
linear but perpendicular with respect to the quantization axis. This leads to the driving of two
different Raman transitions with Raman beam 1 (R1) and R2 between 5S1/2 states, connecting
the |F = 1,mF = −1〉 with |F = 2,mF = −2〉 and |F = 2,mF = 0〉. The Zeeman shift can be
adjusted so that one transition path is resonant and the other, in this case |F = 2,mF = 0〉, is de-
tuned and thereby suppressed. Due to the decay of the 5P3/2 states, the Imaging Repump (RP1)
and Raman Repump 2 (RP2) beams pump the atoms back into |F = 2,mF = −2〉 by driving a
σ− transition to |F ′ = 2,m′F = −2〉. Raman Repump 3 (RP3) drives a closed transition between
the 5S1/2 |F = 2,mF = −2〉 and 5P3/2 |F ′ = 3,m′F = −3〉 states and can be used to induce fluo-
rescence of the atoms in the vibrational ground state. Not to scale.

way out of the relevant ground states for the presented cooling scheme will quickly
be pumped back by the pumping beams.
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4.2. LINDBLAD EQUATION

4.2 Lindblad Equation

For closed two-level transitions, which do not include spontaneous emission, the evo-
lution of the population can be calculated by finding a solution for the differential
equations given by the Schrödinger equation as demonstrated in 2.1.2. Solutions
for transitions with more coupled states can be difficult to find and still do not
account for spontaneous emissions. Therefore, it may be more practical to evaluate
the transition scheme under investigation numerically. This can be done by using a
quantum master equation like the Lindblad equation.
Spontaneous decay processes introduce decoherence to the dynamics of the system
and thereby cause a potentially pure state to become a state mixture. These mix-
tures of states can be described by a density matrix which is generally given by

ρ(t) =
∑
i,j

cic
∗
j |ψi〉 〈ψj| . (4.2)

The off-diagonal terms of the density matrix are associated with the coherence be-
tween the basis states. For the Raman sideband cooling scheme in 4.1 four internal
and n external, or vibrational, states are considered. Accordingly the density matrix
is a (4× n)× (4× n)-matrix.
As for example explained in [39] the equation of motion, or the Liouville–von Neu-
mann equation, for the density matrix of a closed system described by the Hamil-
tonian H can be derived from the Schrödinger equation to be

ρ̇(t) = − i
~

[H, ρ] . (4.3)

To include spontaneous emission the Liouville–von Neumann equation can be ex-
tended to be the Gorini–Kossakowski–Sudarshan–Lindblad equation, or short Lind-
blad equation, which looks like

ρ̇(t) = − i
~

[H, ρ] + L(ρ). (4.4)

The second term is referred to as the Lindblad superoperator. It can be expressed
as

L(ρ) =
∑
i,j

Γi,j
(
LiρL

†
j −

1
2{L

†
jLi, ρ}

)
. (4.5)

The expression {A,B} describes the anticommutator relation {A,B} = AB + BA.
The operators Li have the form Li = |Fi,mF,i, νi〉

〈
F ′i ,m

′
F,i, ν

′
i

∣∣ and Γi,j is the corre-
sponding decay rate for this path. For the optical transitions that will be addressed
later on only the decay rates Γi,j for transitions from an excited state to a ground
state and for i = j are not zero and contribute. Moreover, in the Lamb-Dicke regime
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only those transition paths with νi − ν ′i = 0,±1 will be considered.
The decay rates for the internal atomic states can be calculated as can be done
with Eq. 2.33. The spontaneous emission, besides coupling the internal electronic
state of the atom, induces a motional coupling as well. As described in 3.3 in the
Lamb-Dicke regime this couples neighboring vibrational levels. For the decay rate
is proportional to the square of the coupling matrix element, the decay rates for the
same internal transition path are modified by

ΓI,ν→ν−1 = ΓI · η2ν (4.6a)
ΓI,ν→ν = ΓI · (1− η2(2ν + 1)) (4.6b)

ΓI,ν→ν+1 = ΓI · η2(ν + 1), (4.6c)

where ΓI is the decay rate for the respective internal transition and ν is an integer
indicating the vibrational state. Here the Lamb-Dicke parameter η technically has
to be modified because of its dependence on the momentum transfer from the photon
to the atom. Since the spontaneous emission is not directed but isotropic, an average
Lamb-Dicke parameter has to be obtained for the spontaneous emission processes
by integrating and averaging it over a momentum spheres surface with a radius of
the recoil momentum kR of the spontaneously emitted photon with

〈η〉 = 1
4πk2

R

∫
|k|=kR

〈
ν ′
∣∣eikr̂∣∣ν〉 dk. (4.7)

For practical reasons, simulations featured in this thesis are calculated with the
maximal value for η. Considering Eq. 4.6, this favors heating processes due to spon-
taneous emission and should lead to a worse performance than in the ideal case.
The Hamiltonian for the proposed Raman sideband cooling scheme in 4.1 can be
constructed from the time-dependent Hamiltonians for the two level problem and
the time-dependent reduced Hamiltonian for the Raman transition. The time-
dependence is necessary since the different laser do not necessarily have the same
detuning and therefore have different rotating frames. It can be written as

H = ~
2


2ΩAC

1 C1,n 0 ΩRe−iδRtCR,n 0
0 0 0 Ω∗RP1e−iδ1tCRP1,n

Ω∗ReiδRtC†R,n 0 2ΩAC
2 C2,n Ω∗RP2e−iδ2tCRP2,n

0 Ω∗RP1eiδ1tC†RP1,n Ω∗RP2eiδ2tC†RP2,n 0

 . (4.8)

ΩAC
1/2 are the effective light shifts of the Raman transition given by Eq. 2.47 and ΩR

is the Rabi frequency for this Raman transition given by Eq. 2.46. ΩRP1 and ΩRP2

are the Rabi frequencies for the RP1 and RP2 beams respectively. δR, δ1 and δ2 are
the corresponding detunings for the Raman transition, the RP1 and RP2 beams.
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The Cm,n are n× n-matrices providing the coupling between the vibrational states.
For the Raman Repumper the CRP1/2,n are filled according to Eq. 3.26. CR,n only
contains the coupling element to for the resonant vibrational state. C1/2,n only have
ones on the diagonal except for the first or the last entry respectively, which are
zero, since the vibrational ground state of the first Raman coupled internal ground
state and the highest vibrational state of the second Raman coupled internal ground
state are dark states for the Raman transition.
To include the coupling of RP3 for the fluorescence imaging, this Hamiltonian can be
expanded easily to a (5×n)× (5×n)-matrix with a coupling between the additional
internal state 5P3/2 |3,−3〉 and the initial ground state 5S1/2 |2,−2〉.

4.3 Simulated Population Evolution

By utilizing an algorithm for numerical calculations of differential equations, it is
possible to simulate the time evolution of the density matrix governed by a Hamil-
tonian similar to the one described in Eq. 4.8 and the Lindblad equation Eq. 4.4. A
popular algorithms for this task are the Runge-Kutta algorithm and its variations.
Such derivative algorithms are implemented in MATLAB, as for example in form of
the ode45 function [57]. The ode45 function was used for the computation of all
time evolution plots presented in this thesis, including the ones already shown.
Depending on the number N of vibrational levels that are included in the calcu-
lation, visualizing all states separately can look confusing, since in the case of the
transition scheme for fluorescence imaging shown in Fig. 4.2 there are 5×N separate
states. So it makes more sense to reduce the number of states in a meaningful way.
A practical reduction is to calculate a mean vibrational level. In order to do this
the vibrational states of the initial internal state 5S1/2 |2,−2〉 act as a reference. As
mentioned before the states 5S1/2 |2,−2, ν〉 and 5S1/2 |1,−1, ν − 1〉 are coupled by
the coherent Raman transition and thus will be assigned to the same vibrational
number ν. The vibrational states of the internal states 5S1/2 |2,−1〉, 5P3/2 |2,−2〉
and 5P3/2 |3,−3〉 are not reassigned. By weighting the population of each vibra-
tional state with its vibrational number ν the mean vibrational number can than be
calculated as the sum over the weighted populations. Another crucial information
about this process is the total number of photons scattered at a certain point in
time, since the purpose of the whole setup is to collect enough photons per atom
to determine the population of the occupied lattice sites with high certainty. To
calculate the number of photons scattered NSP between t0 and t1 the population
probability ρe of the excited states have to be integrated and multiplicated with the
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decay rate Γe of the respective state like

NSP =
t1∫
t0

(Γe1ρe1(t) + Γe2ρe2(t)) dt. (4.9)

In order to calculate such kind of model, the number of vibrational levels under
consideration has to be limited. For the calculation presented in the following the
vibrational levels were truncated to 10 + 1. Ten vibrational levels are incorporated
as described in 4.2 and one additional vibrational level is used to estimate the loss of
atoms. Atoms can be excited into this eleventh vibrational level but cannot escape
it, removing them from further transitions. The population in the eleventh band is
neither considered for calculating the mean vibrational level, nor do they scatter any
photons. The number of ten main vibrational levels was chosen as a compromise
between comprehensiveness and computational time. The computational model
works with an harmonic approximation, meaning the energy levels of neighboring
vibrational levels are assumed to be equidistant, even though for a deep triangu-
lar lattice the energy gaps become slightly narrower for increasing band numbers.

Parameter Value

∆ 100 GHz
δR 0 Hz
δ1,3 0 Hz
δ2 2 MHz
ΩR 54 kHz
Ω1 149 kHz
Ω2 86 kHz
Ω3 47 kHz
ηR 0.21

η1,2,3,Spon 0.17

Tab. 4.1: Simulated popula-
tion evolution parameters.

Using the harmonic approximation and the measured
trap frequency of 130 kHz from 3.1, the vibrational
ground state and the first excited state differ by about
64.2ER. As mentioned this is equivalent to a trap
depth of 1830ER. For a tringular lattice with this trap
depth the gap from the eighth to the ninth excited state
amounts to 59.4ER, which correspond to a difference of
9.8 kHz compared to the separation of the ground state
to the first excited state. According to Eq. 2.49 a detun-
ing of 9.8 kHz from resonance at a bare Rabi frequency of
ΩR = 54 kHz would lead to an effective Rabi frequency
of Ω̃R = 54.9 kHz. This change of the Rabi frequency of
about 1.6 % and the accompanying transition amplitude
change of about 3.2 % will be neglected.
The parameters chosen for the computation are summa-
rized in Tab. 4.1. The parameters ∆ and δR are the
detunings of the Raman transition as introduced in 2.3.2. δ1,2,3 are the detunings of
the respective pumping beams. Only the repumper 2 has a detuning different from
zero to avoid coherent population trapping as explained in 4.1. The ΩR,1,2,3 are
the respective bare Rabi frequencies of the Raman transition and the repumpers.
Similar the ηR,1,2,3,Spon are the estimated Lamb-Dicke parameters for the Raman
transition, the repumpers and the spontaneous emission.
The computation result is shown in Fig. 2.2. Due to the detuning of the repumper
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Fig. 4.3: Transition scheme time evolution. The plots show the evolution of the mean vibrational
level (a), the mean number of scattered photons (b), the loss permille (c) and the loss velocity
permille using the computational model and parameters described in 4.3. The mean vibrational
number after 20 ms is 0.04. Judging from the asymptotic like behavior of the mean vibrational level
and the loss velocity, the system went into relatively slow changing state, with almost constant
mean vibrational level, photon scattering and atom loss. Therefore and due to the high calculation
time of this model, the scattered photons and the loss for longer periods will be estimated by
assuming a linear growth after the computed 20 ms. After 600 ms accordingly an average of 1738
photons per atom are scattered and 3.3 % of the atoms are lost.
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2 the calculated values become complex and to account for the fast changes caused
by the high detuning the time steps for the computation have to be chosen smaller
to a avoid too strong deviation. These two reasons make this model difficult to
simulate and the calculation of time scales of interest can take several hours. The
particular simulation shown in Fig. 2.2 took twenty hours of calculation time. As
this might change in the future due to more computational power or by using com-
puting clusters, in the scope of this work it is unpractical to calculate longer time
scales. However, for the parameters presented here, the simulation goes into a rela-
tively slow changing state. Therefore, in order to estimate the in average scattered
photons per atoms and the atom loss, the photon scattering and the atom loss are
assumed to be constant. Under this assumption after a period of 600 ms an average
of 1738 photons will be scattered per atom and 3.3 % of the atoms will be lost from
the lattice. With an estimated total collection efficiency of 7 % for the quantum
gas microscope imaging system this would correspond to 122 collected photons per
atom. This number of photons is assumed to be sufficient for single site resolved
imaging. For the total collection efficiency the solid angle covered by the objec-
tive, losses at optical components and the detection efficiency of the detector were
taken into account. By fitting a exponential function to the mean vibrational level
evolution a time constant of 266 µs−1 is obtained. It should be mentioned that the
simulation parameters were not optimized due to the high time consumption of one
calculation. A suitable range of parameters was estimated by using models with
less vibrational levels and shorter time periods. It is likely that the results can be
improved by systematically optimizing the simulation parameters.

4.4 Experimental Setup

This section will present the optical setups and the electronics build and used during
the period of this work. This includes the optical setup of the Raman laser system
on the laser table, the offset lock system used to establish a stable frequency relation
between the Raman lasers and the optical setup on the experiment table. Further-
more in a short experiment it is investigated if the experimental setup is suitable to
drive Raman transitions.

4.4.1 Laser Setup

The Raman laser setup is installed on the laser table of the experiment and consists of
two Toptica DL Pro 780 diode lasers, the Raman 1 and Raman 2 lasers, operating
with a relative frequency of about 6.8 GHz with respect to each other at a wavelength
corresponding to the 87Rb D1-line of about 795 nm . Both lasers are controlled by the
same Toptica DLC pro digital laser controller. By using a half-wave plate (HWP)
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Fig. 4.4: Simplified Raman laser setup scheme. Two lasers, Raman Laser 1 and 2, are used as
a source for the Raman beams. The Raman laser 1 is branched into two beams labeled Raman 1
Horizontal and Vertical as their wave vectors are either aligned in the horizontal triangular lattice
plane or have a vertical component. Fractions of both Raman lasers 1 and 2 are divided into equal
parts by 50:50-beamsplitters (BS). One splitted beam of each laser is interfered at a fast photo
diode (PD) to pick up a beat signal, whose oscillation frequency corresponds to the frequency
difference between the two lasers. Polarization-maintaining fibers are shown in blue. Yellow fibers
are not polarization-maintaining. Mirrors and mechanical shutters are omitted.

and a polarizing beamsplitter (PBS) for each laser the polarization of the laser light
can be cleaned and branched into two beams. The branching ration can be controlled
by adjusting the angle of the HWP. A fraction of the laser light is used to monitor the
wavelength at a wavemeter. Another fraction of both beams is interfered at a fiber
coupled fast photo-diode. The used photo-diode is a Electro-Optics Technology
GaAs Pin Detector ET-4000F. With a bandwidth of more than 12.5 GHz it is able
to pick up the fast interference beat signal of about 6.8 GHz for the use of a offset
lock system to precisely control the frequency difference between the two lasers.
The main branch of each laser is routed through a HWP and a fiber coupler with an
attached polarization maintaining fiber onto a neighboring area on the laser table.
The polarization maintaining fiber maintains the polarization of the laser beam, as
the name suggests. For this to work the orientation of the beam polarization has
to be aligned correctly. This can be done by shining the output side of the fiber
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onto a HWP and subsequent PBS and monitoring the change in power for one path
after the PBS. If the polarization is not aligned correctly, heating or shaking the
fiber should cause power fluctuations. For the correct alignment the HWP before
the fiber has to be adjusted until no power fluctuation can be observed.
In the neighboring area the beams can again be branched into two by using a HWP
and PBS, which is done for the Raman 1 laser. These two branches are called Raman
1 Horizontal and Raman 1 Vertical as the wave vector of the respective beams will
either lie in the horizontal triangular lattice plane or it will also have a component in
the vertical direction. After each of these PBS a Gooch & Housego AOMO 3080-125
acousto-optic modulator (AOM) is installed and adjusted such that the power of
the first diffraction order is maximized at a operation frequency of 80 MHz.
In the first diffraction order the laser frequency is given by the initial laser frequency
plus the operation frequency of the AOM. With rise times in the order of 200 ns they
can be used for the fast control of the frequency in a range of ±1 MHz and fast on
and off switching of the beam. The diffraction angle depends on both, the operation
frequency of the AOM and the temperature of the crystal inside the AOM. While
there is a radio frequency (RF) signal applied to the piezoelectric transducer in
the AOM to generate sound waves inside the crystal, the crystal is heated up and
thereby the diffraction angle changes until a thermal equilibrium is reached.
When the RF signal to the AOM is cut off for a longer period, the crystal cools
down and the diffraction angle will be changed as soon as the RF signal comes back.
This makes an AOM suboptimal as a switch for longer off-states. For this purpose
fast mechanical shutters are installed after the AOMs. After this shutters there are
another HWP and fiber coupler, which couples to an polarization maintaining fiber
that guides the beams to the experiment table.
The laser setup is shown in Fig. 4.4 in a simplified form, where mirrors and the
shutters are omitted.

4.4.2 Offset-Lock

For the Raman coupling to work, it is crucial to maintain a stable frequency differ-
ence between the two Raman beams. Depending on the laser setup different methods
can be applied to generate two beams with a stable frequency relation. Since in the
laser setup introduced in the previous subsection 4.4.1 two different lasers are used
as a source for the two Raman beam, some kind of offset-lock system has to be
used to maintain a stable frequency relation. For such a purpose a device like the
Toptica mFALC 110 can be used [58]. It is a modified version of the Toptica FALC
110 with a beforehand analog mixer installed. The mixer generates a beat signal
between the interference beat signal and a sinusoidal signal generated with a local
oscillator (LO). The function generator used as the LO is an Stanford Research
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Fig. 4.5: Offset-lock setup scheme. A fast PD picks up the interference beat signal of the lasers
and the electric signal is separated into DC and AC components by a bias-tee. The AC part
with frequency f is amplified and fed into an evaluation board (EVB), which outputs a frequency
divided signal f/64. The divided signal is amplified and used by the mFALC 110 together with a
LO signal from a frequency generator to stabilize the frequency difference between the two lasers
by controlling the piezo voltage and the laser current of the slave laser. The amplified AC part is
also monitored at a spectrum analyzer and an oscilloscope monitors the DC signal and the error
signal of the mFALC 110. An additional frequency standard can be used to trigger the function
generator for a more stable operation.

Systems SG390 signal generator. The beat signal works as an error signal for the
Toptica FALC 110, which it tries to minimize. In order to do this the mFALC 110
has two output ports of which one delivers a control signal for the piezo actuator
for precise control of the grating for wavelength adjustment and the other delivers
a signal for laser current control. The piezo control signal is fed into the laser con-
troller, a Toptica DLC pro digital laser controller, and is used to compensate slow
but comparably large drifts, while the current control signal is directly fed into the
laser head to counteract fast but comparably small changes. The mFALC 110 can
handle input signals with frequencies from 10 MHz up to 200 MHz and the optimum
input voltage range lies between 10 mVpp and 700 mVpp.
However, the beat signal for the Raman transition will be in the order of 6.8 GHz.
For scaling the beat signal to a usable range a Analog-Devices EVAL-ADF4007EBZ1
evaluation board is used. At the MUXOUT output of this evaluation board the
input frequency is divided by 64, which gives a frequency of about 106.8 MHz and
is thus usable with the mFALC 110. Unfortunately the frequency divided signal is
an TTL signal with about 3 Vpp and the MUXOUT output has a 10 kΩ output
impedance. With a connected SMA-type coaxial cable, acting as a capacitor, the
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output impedance and the cable make a low pass filter. For a 1 m cable with an
capacitance of 100 pF/m the output signal decreases to 5 mVpp, which makes an
amplifier necessary. For this purpose a Mini-Circuits ZX60-3018G-S+ amplifier is
used.
The signal put into the evaluation board is the amplified AC part of the interfer-
ence beat signal. The amplifier used for this is a Mini-Circuit ZX60-83LN12+ low
noise amplifier and the bias-tee used to separate the AC from the DC part is a
Mini-Circuit ZX85-12G-S+. The DC output of the bias-tee, as well as the error
monitoring output of the mFALC 110 are connected to an oscilloscope for monitoring.
The amplified AC signal can be picked up at the RFOUT output of the evaluation
board to monitor it with a spectrum analyzer.
The function generator was also supposed to be triggered externally by an Stanford
Research Systems FS725 Rubidium Frequency Standard for extra stability, since
due to the frequency division a deviation of 1 Hz at the function generator would
correspond to 64 Hz deviation of the frequency difference between the two lasers.
However, the frequency standard was out of order during the period of this work.
The offset lock system is illustrated in Fig. 4.5.
The locking procedure works as follows:

1. The fast PD, the evaluation board, the amplifiers, the spectrum analyzer and
the function generator are turned on. The center frequency of the spectrum
analyzer is set to the desired frequency separation and the frequency span is set
to 1 GHz. The frequency of the LO is set to the desired frequency separation
divided by 64 and an amplitude of −4 dBm and the output is enabled.

2. The frequency difference is tuned to the desired separation ±0.5 GHz by using
the measured frequencies at the wavemeter and tuning the piezo voltage or
the laser current at the laser controller.

3. The frequency difference is tuned to the desired separation ±30 MHz by using
the measured beat signal at the spectrum analyzer and tuning the piezo voltage
at the laser controller.

4. The mFALC 110 is turned on and the amplification is ramped up until the
frequency lock is applied, which is indicated by a jump of the carrier peak on
the spectrum analyzer. When the lock is applied small deliberate changes of
the piezo voltage should not effect the spectrum measured with the spectrum
analyzer. Also the amplification should not be ramped up too high, such
that higher sidebands become visible. The sidebands of first order are usually
visible when the lock is applied but the power difference between them and
the carrier should be kept over 30 dB. Typical spectra are shown in Fig. 4.6.
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5. The unlimited integrator on the mFALC 110 is turned on for longer-term sta-
bility.
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Fig. 4.6: Offset-lock spectrum and long time stability. (a) shows a typical spectrum with a span
of 100 Hz relative to the center frequency and a bandwidth of 1 Hz. (b) shows a typical spectrum
with a span of 2 MHz and a bandwidth of 10 kHz. The sidebands of first order are visible. The
power is shown in a linear scale. In (c) the peak frequency of the carrier of the interference beat
signal spectrum is shown with respect to the set center frequency, measured over a time span of
10.5 h. (d) shows the measured FWHM of the carrier peak over the same time period. (c) and (d)
are averaged over 10 consecutive data points. The standard deviation is shown in (c) as the light
blue area enclosing the data points connected by a blue line. The standard deviation for (d) is not
shown as it is almost not visible with a mean value of 16.4 mHz for almost the entire time span
except for the turbulent 20 minutes after 7 hours of measurement. For the highest peak there the
standard deviation is 15.1 Hz.

To evaluate the performance of the offset lock system, the measured spectrum at
the spectrum analyzer was measured over a period of 10.5 h with a span of 100 Hz
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and a bandwidth of 1 Hz. The center frequency was set to the hyperfine frequency
separation of the 87Rb 5S1/2 state of 6 834 682 610 Hz. The frequency of the LO was
set to the same value divided by 64. As can be seen in Fig. 4.6, the carrier peak posi-
tion varied by 22.9 Hz over the measurement period. The comparably large change
occurs only during a period of two hours, while the rest of the measurement the
change is quite slow and small. The beginning of the large and fast change coincides
with the time the last person left the laboratory. A possible explanation for the co-
inciding change could be a change of the LO frequency due to temperature change
in the room that effected the frequency generator. As mentioned before the LO
was free running. Considering the frequency division this would correspond to a LO
frequency change of 0.36 Hz. For a Rabi frequency of 10 kHz of a Raman transition,
this deviation would cause a change of the Rabi frequency of 26.2 mHz. Therefore,
the offset lock is stable enough and this issue was not addressed. Furthermore there
seems to be some kind of turbulence of the full width at half maximum (FWHM),
which was at 1.5 Hz for almost the entire time, except for seemingly random data
points during a 20 minute period after seven hours of measurement. The reason
for the disturbance is unknown, but such a behavior was never encountered again,
which is why this issue was also not further addressed. The FWHM might even be
smaller than 1.5 Hz since the measurement bandwidth was at the minimum of 1 Hz.

4.4.3 Raman Transition Experiment

As the lattice beams were not installed yet and in order to check if the laser and
offset lock system are suitable, the Raman 1 and 2 beams were installed preliminary
on the experimental table. They were aligned copropagating and their polarizations
were set perpendicular to each other. The copropagation is necessary to avoid the

Atoms

y

x

z

R2

R1

B

Fig. 4.7: Beam alignment for Raman transition. The Raman 1 (R1) and 2 (R2) beams are
overlapped and have perpendicular linear polarization with respect to each other. They lie in
the x-y-plane. The magnetic field is showing along the x-axis. Since the polarization of R2 is
completely and of R1 to large parts perpendicular to the magnetic field the Raman transition
driven is of the π± − π∓ type.
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transition to become velocity selective. Additionally a magnetic field of 1 G was
applied along the x-axis. The setup is illustrated in Fig. 4.7. The magnetic field
sets the quantization axis of the atoms and also lifts the degeneracy of the magnetic
states, such that by choosing the right frequency difference for the Raman process
only one transition between two magnetic states is resonant. The transition cho-
sen for this experiment was a π± − π∓ type Raman transition between the states
|1, 0〉 and |2, 0〉. Transitions between these two states are called clock transitions as
their energetic separation is not effected by small magnetic fields and thereby they
are insensitive to magnetic field fluctuations. This makes them ideal candidates for
conventional atomic clocks. For the same reason they are best suited to directly
observe Rabi oscillations. For this transition both beams should be polarized linear
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Fig. 4.8: Observed Rabi oscillation by a Raman transition. In a copropagating alignment R1
and R2 drive π± − π∓ type Raman transitions on the clock transition between 5S1/2 |2, 0〉 and
5S1/2 |1, 0〉. The oscillation can clearly be observed, even though for longer time periods decoher-
ence washes it out. By fitting a sinusoidal function to the data a Rabi frequency of (19.5± 0.5) kHz
is obtained. The expected value by a calculation with the experimental parameters is 19.4 kHz.

but perpendicular to each other and also perpendicular to the quantization axis.
But as the beams are aligned with an angle of 60° with respect to the quantization
axis in the x − y-plane one of the beams will only contribute with

√
3/2 parts of

the electric field amplitude or 3/4 parts of its power to the transition.
To measure the oscillation first the atoms in the 5S1/2 |F = 2〉 state are blasted
out by using the imaging beam, which drives transitions between 5S1/2 |F = 2〉 and
5P3/2 |F = 3〉. Afterwards the Raman beams are applied to transfer atoms from
F = 1 to F = 2. The transferred atoms can than be imaged by the imaging beam.
The atoms were trapped in a far-off-resonance optical trap for the measurement.
With estimated powers of 32 mW for R2 and 25 mW for R1 at the atom position
and measured beam waists of 1.9 mm and 0.8 mm respectively a Rabi frequency of
19.4 kHz is expected.
The fit in Fig. 4.8 gives a Rabi frequency of (19.5± 0.5) kHz. The signal is propor-
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tional to the fluorescence counts of the used detector. The maximum signal obtained
for the transitioned population corresponds to a fraction of 0.27 of the total popula-
tion signal. As the population should be distributed equally over the the magnetic
sublevels, it is expected that a fraction of 0.33 of the population takes part in the
transition.
It can be seen that with longer transition periods the signal gets washed out. This
decoherence is most likely due to the Gaussian intensity profile and the consequential
position dependent Rabi frequencie.

4.4.4 Repump lasers

In addition to the Raman laser setup to prepare the Raman beams, a laser system
preparing the Raman repumpers (RP) is necessary. The required frequency for the
RP1 beam matches the frequency of the imaging repumper already installed at the
experiment. Its primary purpose is to pump the atoms from the 5S1/2 |F = 1〉 states
into the 5S1/2 |F = 2〉 state since the imaging system is configured to image atoms
in the latter state. Previously there were no beams matching the requirements for
RP2 and RP3. However, the laser for the three dimensional magneto optical trap
(3D-MOT) of the experiment has a similar frequency. It is detuned 106.65 MHz from
RP2 and −160 MHz from RP3. To create the necessary beams some of the 3D-MOT
beam will be branched off and is subsequently adjusted to the correct frequencies
by using AOMs. For RP3 a AOM modulating with a frequency of 80 MHz is used
in a double pass configuration. A double pass configuration uses a PBS before and
a quarter wave plate (QWP), a lens and a retroreflecting mirror after the lens such
that the beam after passing the AOM and being modulated with 80 MHz follows the
initial path back through the AOM, being modulated with 80 MHz a second time,
but with 90° turned polarization until it arrives at the PBS were it is separated from
the incoming beam. RP2 uses a single pass AOM configuration, directly modulating
106.65 MHz. The used AOMs are of the same type as in the Raman laser setup.
The cooling scheme presented in 4.1 requires that the repumpers drive σ− transi-
tions. This means that they have to be aligned along the quantization axis with
circular polarization. As shown in Fig. 4.7 the quantization axis coincides with the
spatial axis declared as the x-axis.
Furthermore, the experiment first captures atoms in a low-vacuum chamber with a
2D-MOT from where they are pushed through a narrow tube into a high-vacuum
chamber where they are captured in the 3D-MOT. This pushing process works
through the radiation pressure of a pushing beam which is as well aligned along the
x-axis but propagates in the negative direction. Also the position of the triangu-
lar lattice, which is the sample position for the planned quantum gas microscope
(QGM), is not at the 3D-MOT position but is also connected to it through the
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x-axis. In order bring the atoms from the 3D-MOT position to the QGM position
an optical tweezer is used which is once again aligned along the x-axis but prop-
agating in positive direction. Since both directions along the x-axis were already
occupied, one of the existing beam paths had to be rebuild. As the optical tweezer
setup is much more extensive and additionally the unoccupied space on that side of
the experimental table is less, it was decided to rebuild the pushing beam setup. A

PB RP1 RP2

RP3

HWP QWP PBS BS NDF

Fig. 4.9: Raman repumper output setup. Eventhough, the repumpers are guided through po-
larization maintaining fibers they are polarization cleaned by using HWP and PBS1. They are
overlapped by using 50:50-BS. This makes only half of the power of RP1 and only a fourth of
the power of RP2 and RP3 usable. Another HWP is used to adjust their collective polarization.
With a neutral density filter (NDF) that is installed on a flippable mount, the applied power can
be dynamically switched between two ranges. The neutral density amounts to 2.5. A subsequent
PBS is used to combine the pushing beam with the repumpers. A quarter wave plate (QWP) is
used to set the circular polarization necessary for driving σ− transitions. Mirrors, beam samplers
and PDs for power measurement are omitted.

schematic depicting the setup which couples the beam paths of the pushing beam
and the three repumper beams is given in Fig. 4.9. The combined repumper beams
and the pushing beam are overlapped by using perpendicular linear polarizations
and a PBS. The repumpers are combined beforhand by using simple BSs. Due to
the BSs one of the repumpers, RP1, can only apply half of the beam power after
the transporting fiber while the other two repumpers can only apply a fourth of
their power after the fiber. For all current scenarios all repumpers still have enough
power. Recalling the Raman cooling scheme and the necessary Rabi frequencies for
the repumpers, during cooling powers of only a few tens to a few hundred nanowatt
are required. This necessitates neutral density filters (NDF). Such NDF are installed
before combining the repumpers with the pushing beam. They are mounted on a
flippable stage, making it possible to remove them from the beam path by using a
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TTL signal.
The circular polarization is set by a QWP after combining all four beams. It can
be adjusted by using a retroreflecting silver mirror after the QWP and setting the
angle of the QWP such that the power reflected into the pushing beam path is
maximized. To check if the right circular polarization was adjusted a microwave
spectrum can be taken after applying RP1 and RP2. If the right polarization was
chosen, there should only be a resonance at the frequency separating 5S1/2 |2,−2〉
and 5S1/2 |1,−1〉.
The spatial alignment for the pushing beam can be adjusted by maximizing the
atoms collected in the 3D-MOT. RP3 was aligned by applying and adjusting it to
minimize the measured atoms in the 5S1/2 |F = 2〉 ground state. For RP2 a simi-
lar procedure was applied. Though RP2 ideally would only pump the atoms into
5S1/2 |2,−2〉, imperfections of the polarization or scattering over 5P3/2 |3,−3〉 in
combination with a high intensity does still lead to a significant loss of atoms. RP1
was aligned by maximizing the observed atoms. This works because the imaging sys-
tem can only image atoms in 5S1/2 |F = 2〉 and RP1 can pump atoms from |F = 1〉
into |F = 2〉 and thereby increase the number of observable atoms. In order to only
measure the atoms in |F = 1〉, the |F = 2〉 atoms have first to be blasted away by
using the imaging beam or RP3.

4.4.5 Quantum Gas Microscope Setup

As mentioned in 3.3 the controlled coupling of neighboring sidebands via Raman
transitions requires that the rotational symmetry of the system under investigation
is at least discretized. Here this is done by the triangular lattice. This discretization
sets specific angles with respect to the lattice vectors that are best suited to couple
all possible eigenstates of the lattice to neighboring ones. The Raman 1 beam is
already fixed in its alignment perpendicular to the quantization axis in order to
drive π0 transitions and the optical axis limits the angle between Raman 1 and the
horizontal plane to a maximum of 24°. The Raman 1 Vertical (R1V) was installed
with this angle of 24° to the horizontal plane. With respect to the ideal angles
for the projected momentum only a few positions for Raman 2 (R2) are suitable.
The actual possible alignments however are even less as the optical access does
only allow for two directions to be implemented without changing already existing
installments. As it was the option with the higher effective momentum R2 was set

1This step is redundant and should have been omitted as the PBSs are not necessarily oriented
exact the same way and thereby the polarization of the repumpers will be minimally tilted to each
other without using additional HWPs after the PBSs. This would cause a loss at the last PBS
combining the pushing beam and the repumpers. The combining PBS alone would be sufficient
for cleaning the polarization of the repumpers and ideally would not cause any additional loss as
the polarization of each repumper could be adjusted individually with respect to the orientation
of the combining PBS. In practice the loss is minimal but it is still a redundant use of PBS.
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Fig. 4.10: Beam alignment for Raman sideband coupling. The Raman 1 (R1) and 2 (R2) beams
are overlapped and have perpedicular linear polarization with respect to each other. They lie in
the x-y-plane. The magnetic field is showing along the x-axis. Since the polarization of R2 is
completely and of R1 to large parts perpendicular to the magnetic field the Raman transition
driven is of the π± − π∓ type. (a) shows the alignment in the x− y-plane. In (b) the z − y-plane
is presented. The lattice beam alignment is visualized by the thin light red arrows. Angles are not
to scale.

with an angle of about 70° with respect to the horizontal projection of R1. The
alignment of the Raman and the lattice beams at the QGM position is illustrated
in Fig. 4.10. Considering that the wave vectors of the lattice beams have an angle
of 120° to each other and that one of the lattice beams has an angle of 9.2° to the
x-axis it can be calculated that the effective momentum has an angle of 16.7° to one
of the lattice beams, which is near the ideal angle of 15°. With this configuration the
maximum possible Lamb-Dicke parameter in the triangular lattice plane amounts to
0.23 according to the numerical calculation based on the triangular lattice Wannier
functions. This setup of R2 and R1V was first used to spectroscope the sidebands.
The steps for taking a spectrum are:

1. Pumping all atoms in the 5S1/2 |2,−2〉 state by applying RP1 and RP2.

2. Applying the Raman beams.

3. Blast away the atoms in the 5S1/2 |F = 2〉 state by using the imaging/probe
beam.

4. Image the atoms in the 5S1/2 |1,−1〉 state by using the RP1/imaging repump
beam.

The detuning of the Raman beams from the D1 line was 100 GHz. However, when
the triangular lattice and the vertical lattice were both applied, the spectrum, as
seen in Fig. 4.11, looked disturbed. One broad resonance is observable between 0
and 30 kHz, which is associated with the carrier transition. A clear sideband can
be seen at about 50 kHz. This blue detuned sideband could be the cooling sideband
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of the vertical lattice as the value for the trap frequency of the vertical lattice was
measured by modulation spectroscopy to be 35 kHz. The sidebands of the triangular
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Fig. 4.11: Sideband spectrum in the 3D lattice using Raman 1 Vertical. The carrier can be seen
as a broad resonance between 0 and 30 kHz. One sideband can be observed at 50 kHz, which may
correspond to the cooling sideband of the vertical lattice. Neither the heating sideband of the
vertical lattice nor the sidebands of the triangular lattice are clearly observable. No errorbars are
shown as each datapoint was only taken once.

lattice are not observable at all. If higher Raman beam powers are used in order
to increase the coupling the spectrum becomes even more disturbed as shown in
Fig. 4.12. Only a very broad resonance is observable. While searching for reasons
for these strange spectra, one explanation that came up was that of a magnetic
state dependent vertical lattice. As explained in more detail in [59, 60] state de-
pendent lattices are shifted relatively to each other depending on the internal state
of the atom. The underlying effect is a spin and polarization dependent light shift
as further explained in [45]. It becomes significant if the detuning of the trapping
light is not much larger than the hyperfine splitting between the 5P1/2 and 5P3/2

states. Here the vertical lattice has a wavelength of 810 nm and is thereby in the
same order as mentioned hyperfine splitting. If beams of the same wavelength and
linear but relatively to each other tilted polarization are interfered a standing wave
forms that has local pools were the electromagnetic field is elliptical or even circu-
lar polarized. The same effect can be used for polarization gradient cooling. As
the different magnetic states are spatially shifted to each other the parity is broken
through the lattice geometry and a coupling between neighboring vibrational levels
should even occur without a momentum projection. This means that the sidebands
of the vertical lattice should in principle as well be observable with microwave transi-
tions. A spectrum taken the same way as the Raman spectra but with a microwave
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Fig. 4.12: Sideband spectrum in the 3D lattice using Raman 1 Vertical and high Raman powers.
The usage of high Raman powers in combination with the 3D lattice caused that no sidebands can
be located. The spectrum just shows a very broad resonance.

transition instead of a Raman transition is shown in Fig. 4.13. And indeed next
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Fig. 4.13: Sideband spectrum using a microwave transition. The state dependent lattice makes it
possible to couple neighboring vibrational levels even with very small momentum projection since
the displacement of the magnetic states already breaks the parity of the lattice eigenfunctions.

to the carrier the sidebands were observable. Such microwave sideband transitions
could in principle be used for cooling purposes as done in [60] but since they re-
quire a state dependent lattice they might be unpractical for the further course of
the experiment as such state dependencies might influence the model Hamiltoni-
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ans to be simulated. By adjusting the polarization alignment of the vertical lattice
beams the vertical lattice sidebands observable with the microwave transition could
be minimized. But still spectra taken with the Raman transition were disturbed.
To evade the effects of the vertical lattice for the time being further spectroscopy
was done without the vertical lattice. As shown in Fig. 4.14 without the vertical
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Fig. 4.14: Sideband spectrum using Raman 1 Vertical without the vertical lattice. Without the
vertical lattice the sidebands of the triangular lattice can be observed with frequency separations
of 130 kHz. But the sidebands and the carrier seem too broad. Possibly due to doppler broadening.
No errorbars are shown as each datapoint was only taken once.

lattice next to the carrier clearly two sidebands are visible even though they seem
quite broad. With a seperation of about 130 kHz from the carrier resonance they
match the trap frequency of 130 kHz measured by modulation spectroscopy. The
broad appearance is suspected to originate from doppler broadening. Without the
vertical lattice the atoms are only weakly trapped in the z-axis direction and R1V
applies a momentum along the same axis. In order to avoid doppler broadening, the
Raman 1 Horizontal (R1H) beam was installed. R1H is coupled in the same path
of an already existing beam used for aborption imaging at a PBS. Unfortunately
this beam path contains a QWP in the further route and thereby changes the po-
larization from linear to circular. This effects the Raman transition mainly in the
aspect of the power that is applied onto the atoms by R1H for the π0 transition.
As the wavevector is perpendicular to the quantization axis, only half of the light
will contribute to the π0 coupling. The other half will contribute to σ− and σ+

couplings equally. These σ± transitions create additional Raman paths. One of the
three kinds of new paths are couplings with ∆F = 0,±1 and ∆mF = ±2. As these
are strongly suppressed for far detuned Raman, transitions such as applied here,
these can be neglected. The other kind are σ± − σ± transitions with ∆F = ±1
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Fig. 4.15: Sideband spectrum using Raman 1 Horizontal in the 3D lattice. The heating sideband
of the triangular lattice can be observed and it can be guessed were the cooling sideband lies.
Compared to the previous spectrum in Fig. 4.14 the signal decreased.

and ∆mF = 0. Considering the detuning due to the magnetic field of 1 G the one
transition of these σ±−σ± transitions with the lowest detuning δ is the one between
5S1/2 |2,−1〉 and 5S1/2 |1,−1〉, with δ = 700 kHz. Even if only these two states are
considered with a bare Rabi frequency of 54 kHz, according to Eq. 2.48 and Eq. 2.13
only 5.9 ‰ of the population will take part in the transition and are thereby neg-
ligible. For the other two coupled states by this transition type the detunings are
2.1 MHz and 3.5 MHz. The third kind of newly appearing transitions are π0 − σ±
transitions with ∆F = 0 and ∆mF = ±1. These are detuned δ = 700 kHz as well
and the same discussion as the previous one can be applied. For a more accurate
estimation the Rabi frequencies for the specific transitions need to be calculated but
as the transition between 5S1/2 |2,±2〉 and 5S1/2 |1,±1〉 are the strongest possible
while maintaining the applied intensity, the estimations made here are upper limits.
Based on the trigonometrical calculated momentum projection and the numerically
calculated Lamb-Dicke parameter for the triangular lattice Wannier functions the
maximum possible Lamb-Dicke parameter for the R2-R1H configuration amounts to
0.24. As shown in Fig. 4.15 using R1H with the vertical lattice also gives a disturbed
spectrum. A spectrum taken with R2 and R1H with only the triangular lattice is
shown in Fig. 4.16.
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4.5 Sideband cooling and Rabi Frequency Mea-
surement

This section will focus on the successful application of the developed continuous
Raman sideband cooling scheme and explain the unusual spectrum shape of the
sidebands. Moreover, the Rabi frequency of the Raman transition in dependence of
the applied power is investigated.

4.5.1 Application of continuous Raman Sideband cooling

With the setup consisting of Raman 2, Raman 1 Horizontal, the Raman repumpers
1 and 2 and the triangular lattice Raman sideband cooling should be observed.
The detuning of the Raman beams was set to 200 GHz from the D1 line. Before
the Raman sideband cooling could be applied it was necessary to determine which
frequency to set for the cooling process. For this purpose a spectrum was taken
again as shown in Fig. 4.16. The peak of the cooling sideband appeared to be at
128 kHz with respect to the carrier transition. R2 was applied with a power of 33 mW
and R1H with 22 mW with estimated beam waists of 1.25 mm. The repumpers were
applied with powers of 1 µW with similar beam waists. The actual intensities cannot
be certainly calculated as neither the power loss at the glass cell nor the beam waist
at the atom position are known. The steps for the Raman sideband cooling are:

1. Pumping all atoms in the 5S1/2 |2,−2〉 state by applying RP1 and RP2.

2. Applying the Raman beams and the repumpers simultaneously.

3. Turn off the Raman beams after 300 ms illumination.

4. Keep the repumpers on for additional 15 ms to pump all atoms back into
5S1/2 |2,−2〉.

These steps are combined with a subsequent spectroscopy measurement to observe
how the Raman sideband cooling influenced the spectrum. It can be directly seen in
Fig. 4.16 that the Raman sideband cooling procedure had some influence. The signal
of the cooling sideband decreased. This can intuitively explained by the ground state
occupation. Since the vibrational ground state in 5S1/2 |2,−2〉 is a dark state for the
Raman sideband transition, they will not take part in the transition. As the cooling
transfers more atoms into the vibrational ground state, more atoms become dark for
the transition at the cooling sideband and therefore the signal decreases. According
to [60] this phenomena can be used to estimate the mean vibrational occupation 〈n〉
by

〈n〉 = R− 1 = PHSB
PCSB

− 1. (4.10)
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Fig. 4.16: Sideband spectrum after Raman sideband cooling. (a) shows the sideband spectrum
without any Raman sideband cooling applied. In (b) the spectrum after 300 ms of cooling is shown.
It can clearly be observed that the signal from the CSB decreases after cooling. As more atoms
are transferred into the vibrational ground state less atoms can take part in the transition on the
CSB as the vibrational ground state is a dark state for this transition. From the population ratio
of the sidebands the mean vibrational level can be estimated. Befor cooling it is 1.11 ± 0.08. By
cooling it decreases to 0.28± 0.02.

PHSB/CSB are the transferred population on the heating sideband (HSB) or the
cooling sideband (CSB) respectively which is proportional to the respective obtained
signal and R is the ratio of the CSB to the HSB population. Using this relation the
mean vibrational level before cooling is found to be 1.11± 0.08. After cooling it is
0.28± 0.02.

4.5.2 Unsymmetric Sidebands

The unsymmetric shape of the sidebands comes from using only a two dimensional
lattice. The beams creating the triangular lattice have a transversal two dimensional
Gaussian intensity distribution. This means that the triangular trap frequency varies
with the displacement along the z-axis. The trap frequency can be described as

ωTri(z) = ωmaxTri exp
(
− z

2

w2
0

)
. (4.11)

ωmaxTri is the maximum trap frequency for the triangular lattice and w0 is the beam
waist of the lattice beams. Additionally, as the atoms are only weakly confined along
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the z-axis, the distribution along the z-axis can be described by the Boltzmann
distribution with

P(z) = 1
Z exp

(
Ez
kBTz

)
= 1
Z exp

(
−mω

2
zz

2

2kBTz

)
, (4.12)

with the partition function Z. If now Eq. 4.11 is solved for

z2 = −w0 ln
(
ωTri
ωmaxTri

)
, ωTri ∈ [0, ωmaxTri ] , (4.13)

the distribution can be expressed as

P (ωTri) = 1
Z

(
ωTri
ωmaxTri

)α
, with (4.14a)

α = mω2
zw

2
0

2kBTz
. (4.14b)

The spectrum for one sideband FSB can now be calculated as the convolution of the
distribution function and the uninfluenced spectrum F as

FSB(ω) =
ωmax

T ri∫
0

F(ω − ω′)P(ω′)dω′. (4.15)

According to Eq. 2.48 and Eq. 2.13 the ideal uninfluenced spectrum should be given
by a Lorentz function. Examples of the Lorentz function, the distribution function
and the convolution of both are shown in Fig. 4.17. A value proportional to the
respective transferred population over the HSB can be calculated by integrating
over the HSB spectrum

PHSB ∝
∫
FHSB(ω)dω = AHSB

∫
FSB(ω)dω, (4.16)

where AHSB is a scaling factor proportional to the transfered population but also
proportional to the maximum of the sideband. The same relation holds for the CSB.
Therefore the ratio R is given by

R = PHSB
PCSB

= AHSB
ACSB

(4.17)

and can be determined by calculating the ratio of the respective sideband maxima.

4.5.3 Raman Rabi Frequency Measurement

Currently it is not possible to directly measure the Rabi oscillations caused by the
Raman transition for the coupling between 5S1/2 |2,−2〉 and 5S1/2 |1,−1〉. The origin
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Fig. 4.17: Example for a unsymmetric sideband. In (a) a normalized Lorentzian function is
shown as an exaple for the expected uninfluenced spectrum of the a Raman sideband transition.
(b) shows the normalized distribution over the frequency due to the spatial dependence of the 2D
triangular lattice trap frequency in the vertical direction. (c) shows the normalized convolution of
(a) and (b), which is the expected shape of the sidebands. This convolution function was used to
fit the spectra shown in Fig. 4.16.

of the effect hindering the observation is not certainly determined but it is suspected
to be magnetic field fluctuations from the passive magnetic field compensation coils,
which also set the quantization axis. However, the Rabi frequency can still be
measured indirectly. This can be done by using the Raman beams to sweep over the
resonance of the transition that is under investigation. As well explained in [61] the
transition probability for such a transition scheme in dependence of the sweep time
can be described by the Landau-Zener formula. In a scheme with a linear frequency
sweep the relative transferred population is given by

Pe(t) = 1− exp
(
−πΩ2

2∆ t

)
. (4.18)

The Rabi frequency Ω and the sweep range ∆ are both given in angular frequencies.
In Fig. 4.18 a data set with a Landau-zener function fit is shown to determine
the Rabi frequency of the transition with (23.1± 4.2) kHz. It is also shown that
the Rabi frequencies for different R1H powers resemble the square root shape as
expected from Eq. 2.46 and Eq. 2.7 as the beam power is proportional to the square
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Fig. 4.18: Raman Rabi frequency measurement. (a) shows a fit of a Landau-Zener formula as
shown in Eq. 4.18. The only free fit parameters are the amplitude, a constant offset and the Rabi
frequency. The powers applied are 29 mW for R2 and R1H and the sweep range was 100 kHz. The
obtained Rabi frequency is (23.1± 4.2) kHz. As isolated data points were only taken once they do
not have errorbars. (b) shows the obtained Rabi frequencies in dependence of the applied R1H
power. R2 was constantly at 29 mW and the sweep range amounted 100 kHz. It can be seen that
a square root function fits the obtained data well. In contrast to the "Full Fit" the "Reduced Fit"
did not take the data point at 29 mW into account.

of the electric field amplitude. The only free parameter in the square root fit is the
product of the beam waists of R2 and R1H as it is antiproportional to the electric
field amplitude. The evaluated beam waist for the reduced fit is (1.14± 0.09) mm,
which is not much bigger than the specification for the used fiber collimators with
1 mm at the output side of the fibers.
This measurement was also used to determine the Rabi frequency of a sideband
transition in Fig. 4.19. The single parameter that was changed in both measurements
is the center frequency of the sweep to select the desired transition. The powers
applied were 33 mW for R2 and 32 mW for R1H. The sweep range used was 50 kHz.
For the carrier transition a Rabi frequency of (15.9± 2.6) kHz was determined. The
Rabi frequency for the HSB was measured to be (8.0± 1.1) kHz. While the carrier
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Fig. 4.19: Raman Rabi frequency measurement for a carrier and a sideband transition. (a) shows
the data points for the carrier transition while in (b) the data points for the HSB can be seen.
The carrier Rabi frequency is calculated to be (15.9± 2.6) kHz and the sideband Rabi frequency
is (8.0± 1.1) kHz. With a ratio of 1/2 it is about 1.5 times as large as expected

Rabi Frequency matches the reduced fit from Fig. 4.18, the Rabi frequency for the
HSB seems off. As the Rabi frequency for the HSB is given by η

√
n+ 1ΩC and the

maximal Lamb-Dicke parameter is 0.23 this would correspond to a mean vibrational
number of 3.7 ± 1.3. But this value is not in accordance with the calculated mean
vibrational level of 1.11 from the spectrum in Fig. 4.16. For a mean vibrational level
of 1.11 a Rabi frequency of 5.3 kHz would be expected.

4.5.4 Raman Sideband Cooling Time Constant

In order to to estimate a time constant for the Raman sideband cooling process three
spectra with different cooling times were taken. The lack of time did not allow for
further spectra but for a rough first estimation with an exponential fit this should
be enough. This data cannot directly be compared to the ones in Fig. 4.16, as here
the time frame reserved for Raman sideband cooling was constantly 200 ms. The
value that changed for each datapoint, is the moment t0 when the shutters for the
Raman sideband cooling were opened. The cooling time is thereby given by 200−t0.
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Fig. 4.20: Raman sideband cooling time constant measurement. The vibrational level was es-
timated in the same manner as described in 4.5.1. The cooling was preceded by a waiting time,
such that together the waiting time and cooling time give 200 ms. Therefore, these values cannot
be directly compared to the one determined in Fig. 4.16.

During the initial part of this time frame heating without any suppressing cooling
occurs, as can be told by comparing the data points for 0 s cooling from Fig. 4.16
and Fig. 4.20. During the 200 ms time frame without cooling, the atoms gain 1.4
vibrational quanta. The fit in Fig. 4.20 has a time constant of 537 µs.

4.6 Conclusion

A possible scheme for a continuous Raman sideband cooling application was pre-
sented which can be used as the basis for fluorescence imaging in a quantum gas
microscope. Furthermore, with the Lindblad equation a method was introduced to
calculate the density matrix evolution in systems governed by an Hamiltonian H
and spontaneous processes. This method was used in combination with a numeri-
cal algorithm for solving differential equations in order to simulate the population
evolution under the proposed cooling scheme. The evaluated decrease of the mean
vibrational level is governed by a time constant of 266 µs. Under the ideal condi-
tions assumed for the simulation a illumination duration of 600 ms is sufficient for
single site resolved imaging in the planned quantum gas microscope experiment. A
upper limit for the loss of 3.3 % is obtained. However, the experimental parameters
used for the simulations were not systematically optimized an thus may hold the
potential for improvements.
In addition the constructed optical setups and the stable offset lock system were
presented. By using the offset lock system the beat signal of the two Raman lasers
only varied by 22.9 Hz over a time span of 10 hours and has a linewidth of only
1.5 Hz, though this may be seen as a upper limit as the minimum measurement
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bandwidth was 1 Hz.
Due to thus far unresolved issues, currently the cooling experiments were only con-
ducted in the 2D triangular lattice. In this lattice it was possible to successfully
lower the mean vibrational level from 1.11 ± 0.08 to 0.28 ± 0.02. By measuring
the vibrational level for different cooling durations a time constant of 537 ms was
determined. Moreover, by measuring the Rabi frequency indirectly by applying the
Raman beams while sweeping once linearly over the resonance frequency the ex-
pected square root proportionality for the single Raman beam power was obtained.
However, a discrepancy between the expected sideband transition Rabi frequency
and the carrier transition Rabi frequency was found.
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Chapter 5

Conclusion and Outlook

This thesis gives a brief introduction into optical transitions with atoms in order to
understand the required mechanisms for the Raman-sideband cooling which are the
optical transitions between magnetic hyperfine levels and Raman transitions.
Furthermore, the triangular lattice was discussed and the exact potential given by
the three beam interference was presented. This was used to approximate the po-
tential harmonically in order to establish a connection between the trap depth and
the trap frequency. A trap frequency obtained by modulation spectroscopy was used
in this relation to estimate the trap depth of 2059ER. Additionally, the Lamb-Dicke
approximation was introduced for estimating the coupling between vibrational levels
in a deep potential. By comparing the numerical calculated coupling of the triangu-
lar lattice, for which Wannier functions were used, to the Lamb-Dicke approximation
and the explicit numerical calculation for the harmonic oscillator, it was found that
the coupling in a deep triangular lattice only differs by 1.1 % from the harmonic
oscillator. Therefore, they are almost equally well approximated by the Lamb-Dicke
approximation.
Continuing with the development of a well suited fluorescence imaging scheme and
brief introduction of the Lindblad equation for computing the time evolution of
the density matrix in a system governed by a Hamiltonian H and additional sponta-
neous processes, the imaging scheme was simulated for reasonable, but not optimized
experimental parameters. From the simulation data the required imaging time of
600 ms was estimated in which an average of 1738 photons will be scattered per atom,
while 3.3 % of the atoms will be lost from the trap. The mean vibrational level evo-
lution can be described with a time constant of 266 µs and the mean vibrational level
decreases down to 0.04. Moreover, the experimental laser setup was presented, con-
sisting of two offset-locked lasers. The offset-lock uses the interference beat signal
between the two lasers as the input signal. Over a measurement time of 10 hours the
maximum frequency change of the carrier peak amounted 22.9 Hz and the FWHM
was 1.5 Hz, possibly limited by the measurement bandwidth of 1 Hz. The laser setup

63



CHAPTER 5. CONCLUSION AND OUTLOOK

could successfully be used to drive Rabi oscillations on the clock transition between
the hyperfine ground states. The obtained frequency of (19.5± 0.5) kHz matches
the calculation of 19.4 kHz. With the initial beam alignment setup some difficul-
ties were encountered during spectroscopy experiments which led to a preliminary
alternative setup that only couples vibrational levels of the triangular lattice. Addi-
tionally, further experiments were continued only in the two dimensional triangular
lattice to avoid disturbances. When the vertical lattice was applied, the spectra be-
came broadened. Furthermore, if the vertical lattice was applied, the vertical lattice
sidebands could even be resolved by microwave spectroscopy suggesting that the
vertical lattice exhibits a local spin-dependency. In the two dimensional lattice, the
triangular lattice sidebands were successfully resolved, and Raman-sideband cooling
was applied. The vibrational level was lowered from 1.11 ± 0.08 to 0.28 ± 0.02. A
time constant characterizing the cooling of 537 ms was obtained which is in the same
order as the numerical evaluated one. Even though decoherence, possibly caused by
magnetic field fluctuations, prohibits the observation of Rabi oscillations, the Rabi
frequency can indirectly be measured by driving the laser frequency linearly from
red detuning over the resonance to blue detuning for different velocities. Such a
time dependent system can be described by the Landau-Zener formula. Therefore,
the Rabi frequency can be obtained by a fit. The Rabi frequencies for the carrier
transition resemble the expected square root proportionality for the single Raman
beam power. By comparing the sideband transition Rabi frequency to the carrier
transition Rabi frequency a discrepancy was found as the Rabi frequency for the
sideband transition was 8/5 of the expected value.

It was shown that in principle the built experimental setup can be used to drive
Raman sideband transitions, and thereby is suitable for Raman sidband cooling.
The achieved mean vibrational levels are not quite at the numerically estimated
minimum being 7 time larger. Therefore, there might be still room for improvements
only by systematically optimizing the experimental parameters, as this has not done
yet. The Raman transition might also be improvable by reducing the detuning from
the D1 transition or by decreasing the beam waists of the Raman beams in order to
increase the Rabi frequency. Another issue is that the spectroscopy and cooling so
far could only be done in the two dimensional triangular lattice. As mentioned, the
occurred problems with the vertical lattice might be due to a local spin-dependency
caused by misaligned polarization. Further investigations should clarify if this is
the reason for the disturbed spectra. Moreover, currently there is no BEC as the
number of atoms arriving at the far-off-resonance optical dipole trap does not allow
for evaporative cooling into the degenerate state. As recently demonstrated, Raman
cooling was used to achieve quantum degeneracy without the need for evaporative
cooling [34]. A secondary application of the Raman setup for this purpose might
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Appendix A

An Atom in an Electromagnetic
Field

For the sake of completeness this chapter will show a semi classical derivation of the
Hamiltonian describing the interaction between an atom and an electromagnetic
field beginning from the Lorentz force. The following will be a recapitulation of the
corresponding chapters of [62–64].

A.1 Classical Lorentz-Force Hamiltonian

Starting from the Lorentz force

FL = q(E + v ×B)
= −q(∇φ+ ∂tA+ (v · ∇)A−∇(v ·A)),

(A.1)

where q is the considered charge, v the velocity of the charge and E and B the
electric field and the magnetic flux density respectively, writing the E- and B-field
in terms of the vector potential A and the scalar field φ, with

E = −∇φ− ∂tA (A.2a)
B = ∇× A, (A.2b)

using the identity
v × (∇×A) = ∇(v ·A)− (v · ∇)A (A.3)

and utilizing the total time derivative of the vector potential

d
dtA = ∂tA+ ∂A

∂xα

∂xα
∂t

= ∂tA+ (v · ∇)A, (A.4)

67



APPENDIX A. AN ATOM IN AN ELECTROMAGNETIC FIELD

the equation of motion

mr̈ = −q d
dtA− q∇(φ− v ·A) (A.5)

for a charged particle in an electromagnetic field can be derived. Written like

d
dt(mṙ + qA) = −q∇(φ− ṙ ·A) (A.6)

and compared to the Euler-Lagrange equation

d
dt

∂

∂ṙ
L = ∂

∂r
L, (A.7)

it can be seen that the generalized momentum equals

p = ∂

∂ṙ
L = mṙ + qA (A.8)

and that the Lagrangian can be given by

L = 1
2mṙ

2 + qṙA− qφ. (A.9)

By using the Legendre transform, the Hamiltonian can be derived and results in

H = p · ṙ − L

= p

m
(p− qA)− 1

2m(p− qA)2 − q

m
(p− qA)A+ qφ

= (p− qA)2

2m + qφ.

(A.10)

A.2 The free Hydrogen Atom

By applying the canonical quantization to Eq. A.10, by

x→ x̂ (A.11a)
p→ p̂ = −i~∇, (A.11b)

the semiclassical Lorentz force Hamiltonian is found to be

H = (p̂− qA(x̂, t))2

2m + qφ(x̂, t)

= (−i~∇− qA(x̂, t))2

2m + qφ(x̂, t).
(A.12)
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A.3. CENTER-OF-MASS SYSTEM

For the simplified case of the Hydrogen atom, two oppositely charged point charges,
in the Coulomb gauge,

∇A(x̂, t) = 0, (A.13)

with no additional charges or currents and with coordinates relative to one of the
charges, the scalar potential becomes

qφ(x̂, t) = −q 1
4πε0

∫
ρ(x′, t)
|x̂− x′|d

3x′ = 1
4πε0

qQ

|x̂e − x̂p|
= − 1

4πε0
e2

|x̂e − x̂p|
. (A.14)

In this case the Hamiltonian for the Hydrogen atom reads

H =
(p̂p − eA(x̂p, t))2

2mp

+ (p̂e + eA(x̂e, t))2

2me

− 1
4πε0

e2

|x̂e − x̂p|

=
p̂2
p

2mp

− e

mp

Âp · p̂p + e2

2mp

Â
2
p

+ p̂2
e

2me

+ e

me

Âe · p̂e + e2

2me

Â
2
e

− 1
4πε0

e2

|x̂e − x̂p|
,

(A.15)

where the relation

p̂ · (Â · ψ) = −i~∇(Â · ψ) = −i~((∇Â) · ψ + Â · ∇ψ) = Â · p̂ · ψ, (A.16)

due to the Coulomb gauge in Eq. A.13, was used.

A.3 Center-of-Mass System

The center of mass is given by

R̂
def= mp

M
x̂p + me

M
x̂e, with (A.17a)

M
def= mp +me, (A.17b)

and the relative coordinate between electron and proton by

r̂
def= x̂e − x̂p. (A.18)

69



APPENDIX A. AN ATOM IN AN ELECTROMAGNETIC FIELD

Since the proton is about 1836 times heavier than the electron, their positions can
be approximated by

x̂p = R̂− me

M
r̂ ≈ R̂− me

mp

r̂ and (A.19a)

x̂e = R̂+ mp

M
r̂ ≈ R̂+

(
1− me

mp

)
r̂. (A.19b)

Furthermore, the relations

P̂
def= p̂p + p̂e, (A.20a)

p̂
def= me

M
p̂p −

mp

M
p̂e and (A.20b)

µ
def= mpme

mp +me

, (A.20c)

describing the momentum of the center of mass, the relative momentum of the
reduced mass and the reduced mass respectively, are used to rewrite the proton and
electron momenta as

p̂p = mp

M
P̂ + p̂ and (A.21a)

p̂e = me

M
P̂ − p̂. (A.21b)

Using the center of mass and relative coordinates, momenta and masses, the Hamil-
tonian Eq. A.15 becomes

H = P̂
2

2M + p̂2

2µ −
1

4πε0
e2

|r̂|
− e

M

(
Âp − Âe

)
P̂

− e

µ

(
µ

mp

Âp + µ

me

Âe

)
p̂

+ e2

2mp

Â
2
p + e2

2me

Â
2
e.

(A.22)

A.4 Dipole Approximation

Within the Coulomb gauge, the vector potential Â is connected to the electric field
of the present electromagnetic field by

∂

∂t
Â = −ÊEM (A.23)
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and therefore has the same wavelength λ as such. If this wavelength is large com-
pared to the size of the atom,

dA
λ
� 1, (A.24)

with dA the atom diameter, the vector potential can be approximated to be constant
over the extend of the atom. Considering the van der Waals radius of Caesium in [65]
and the lower end of the visible spectrum, the ratio becomes

dA
λ

= 6.86Å
3800Å

≈ 0.002� 1

and therefore justifying what is called the dipole approximation for at least all stable
atomic species for the visible spectrum. By applying the dipole approximation on
Eq. A.22 the Hamiltonian simplifies to

H = P̂
2

2M + p̂2

2µ −
e

µ
Â0p̂+ e2

2µÂ
2
0 −

1
4πε0

e2

|r̂|

= P̂
2

2M + 1
2µ

(
p̂− eÂ0

)2
− 1

4πε0
e2

|r̂| .
(A.25)

Since the first term in Eq. A.25 is only dependents on the center of mass motion,
it can be disregarded concerning the internal state of the atom. The Hamiltonian
describing the electronic structure of the hydrogen atom is then

H = p̂2

2µ −
e

µ
Â0p̂+ e2

2µÂ
2
0 −

1
4πε0

e2

|r̂|

= 1
2µ

(
p̂− eÂ0

)2
− 1

4πε0
e2

|r̂| .
(A.26)

A.5 Local Transformation

For a unitary local transformation of the form

ψ(r, t)→ T̂ (r̂, t)ψ(r, t) (A.27)
H̃ → T̂HT̂ †, with (A.28)

T̂ (x̂, t) = e− i
~ er̂Â0 , (A.29)

the Hamiltonian becomes

H = p̂2

2µ −
1

4πε0
e2

|r̂| + er̂
∂

∂t
Â0

= p̂2

2µ −
1

4πε0
e2

|r̂| − er̂ÊEM .
(A.30)
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For Eq. A.30
eÂB̂e−Â = B̂ + [Â, B̂] + 1

2! [Â, [Â, B̂]] + · · · , (A.31)

Eq. A.16 and Eq. A.23 were used, the first two giving

T̂ p̂T̂ † = p̂+
[
− i
~
er̂Â0, p̂

]
= p̂+

[
− i
~
er̂Â0,

~
i
∇
]

= p̂+ eÂ, (A.32)

and

T̂ p̂2T̂ † = p̂2 +
[
− i
~
er̂Â0, p̂

2
]

+ 1
2

[
− i
~
er̂Â0,

[
− i
~
er̂Â0, p̂

2
]]

= p̂2 +
[
− i
~
er̂Â0, p̂

]
p̂+ p̂

[
− i
~
er̂Â0, p̂

]
+ 1

2

[
− i
~
er̂Â0,

[
− i
~
er̂Â0, p̂

]
p̂+ p̂

[
− i
~
er̂Â0, p̂

]]
= p̂2 + 2eÂ0p̂+ 1

2

[
− i
~
er̂Â0, 2eÂ0p̂

]
= p̂2 + 2eÂ0p̂+ e2Â

2
0.

(A.33)

The term with the partial time derivative in Eq. A.30 is necessary to satisfy the
Schrödinger equation, since

i~T̂ ∂

∂t
T̂ † = i~ ∂

∂t
− er̂ ∂

∂t
Â0. (A.34)

Now the Hamiltonian can be written as

H = H0 +H′, with (A.35a)

H0 = p̂2

2µ −
1

4πε0
e2

|r̂| and (A.35b)

H′ = −er̂ÊEM(t). (A.35c)

H0 describes the interaction between the electron and the nucleus, having the well
known hydrogen electron orbitals as solutions. H′ describes the coupling between
the Hydrogen atom and the electromagnetic field.
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87Rb Hyperfine Energy Scheme
26 5 Data Tables

52S1/2

52P1/2

794.978 851 156(23) nm
377.107 463 380(11) THz

12 578.950 981 47(37) cm-1

1.559 591 016(38) eV

2.563 005 979 089 109(34) GHz

4.271 676 631 815 181(56) GHz

6.834 682 610 904 290(90) GHz

F = 2

F = 1

gF o=o1/2

(0.70 MHz/G)

gF o=o-1/2

(-o0.70 MHz/G)

305.44(47) MHz

509.06(79) MHz

814.5(13) MHz

F = 2

F = 1

gF o=o1/6

(0.23 MHz/G)

gF o=o-1/6

(-o0.23 MHz/G)

Figure 3: Rubidium 87 D1 transition hyperfine structure, with frequency splittings between the hyperfine energy
levels. The excited-state values are taken from [10, 11, 26], and the ground-state values are from [29]. The relative
hyperfine shifts are shown to scale within each hyperfine manifold (but visual spacings should not be compared
between manifolds or to the optical splitting). The approximate Landé gF -factors for each level are also given,
with the corresponding Zeeman splittings between adjacent magnetic sublevels.

Fig. B.1: Hyperfine Energy Scheme of 87Rb for the D1 transition. From [40].
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5 Data Tables 25

52S1/2

52P3/2

780.241 209 686(13) nm
384.230 484 468 5(62) THz
12 816.549 389 93(21) cm-1

1.589 049 462(38) eV

2.563 005 979 089 109(34) GHz

4.271 676 631 815 181(56) GHz

6.834 682 610 904 290(90) GHz

F = 2

F = 1

gF o=o1/2

(0.70 MHz/G)

gF o=o-1/2

(-o0.70 MHz/G)

193.7407(46) MHz

72.9112(32) MHz

229.8518(56) MHz

302.0738(88) MHz

266.6500(90) MHz

156.9470(70) MHz

72.2180(40) MHz

F = 3

F = 2

F = 1

F = 0

gF o=o2/3

(0.93 MHz/G)

gF o=o2/3

(0.93 MHz/G)

gF o=o2/3

(0.93 MHz/G)

Figure 2: Rubidium 87 D2 transition hyperfine structure, with frequency splittings between the hyperfine energy
levels. The excited-state values are taken from [9], and the ground-state values are from [29]. The relative hyperfine
shifts are shown to scale within each hyperfine manifold (but visual spacings should not be compared between
manifolds or to the optical splitting). The approximate Landé gF -factors for each level are also given, with the
corresponding Zeeman splittings between adjacent magnetic sublevels.

Fig. B.2: Hyperfine Energy Scheme of 87Rb for the D2 transition. From [40].
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